When submitted to high external pressure, flexible pipes may collapse. If the external sheath is damaged, all the external pressure is directly applied on the internal polymeric layer that transmits the loading to the carcass layer, which can fail due to this effect, leading to wet collapse. This failure mode must be taken into account in a flexible pipe design. A model can be set up neglecting the influence of the pressure armor, but this assumption may underestimate the wet collapse pressure value. This work aims to include the pressure armor effect in the numerical prediction of wet collapse. The main contribution of the pressure armor to the flexible pipe resistance to collapse is to be a constraint to the radial displacement of the carcass and the internal polymeric layers. Two models were developed to find the wet collapse pressure in flexible pipes. A first study was done using a ring approximation three-dimensional (3D) finite element method (FEM) model. Comparisons are made with more simplified models using a 3D FEM equivalent ring approximation. The aim is to clarify the mechanical behavior of the pressure armor in the wet collapse scenario. Parametric studies of initial ovalization of carcass and initial gaps and interference between polymeric layer and pressure armor are made and discussed.

References

References
1.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
2.
Martins
,
C. A.
,
Pesce
,
C. P.
, and
Aranha
,
J. A. P.
,
2003
, “
Structural Behavior of Flexible Pipe Carcass During Launching
,”
ASME
Paper No. OMAE2003-37053. 10.1115/OMAE2003-37053
3.
Gay Neto
,
A.
, and
Martins
,
C. A.
,
2012
, “
A Comparative Wet Collapse Buckling Study for the Carcass Layer of Flexible Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(3), p.
031701
.10.1115/1.4005185
4.
De Sousa
,
J. R. M.
,
Lima
,
E. C. P.
,
Ellwanger
,
G. B.
, and
Papaleo
,
A.
,
2001
, “
Local Mechanical Behavior of Flexible Pipes Subjected to Installation Loads
,”
Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering
.
5.
Lu
,
J.
,
Frank
,
M. A.
,
Tan
,
Z.
, and
Sheldrake
,
T.
,
2008
, “
Bent Collapse of an Unbonded Rough Bore Flexible Pipe
,”
Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering
.
6.
Gay Neto
,
A.
,
Martins
,
C. A.
,
Pesce
,
C. P.
,
Meirelles
,
C. O. C.
,
Malta
,
E. R.
,
Barbosa Neto
,
T. F.
, and
Godinho
,
C. A. F.
,
2013
, “
Prediction of Burst in Flexible Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(1), p.
011401
.10.1115/1.4007046
7.
Li
,
F. S.
, and
Kyriakides
,
S.
,
1991
, “
On the Response and Stability of Two Concentric, Contacting Rings Under External Pressure
,”
Int. J. Solids Struct.
,
27
(
1
), pp.
1
14
.10.1016/0020-7683(91)90141-2
8.
Paumier
,
L.
,
Averbuch
,
D.
, and
Felix-Henry
,
A.
,
2009
, “
Flexible Pipe Curved Collapse Resistance Calculation
,”
ASME
Paper No. OMAE2009-79117. 10.1115/OMAE2009-79117
9.
Vasilikis
,
D.
, and
Karamanos
,
S. A.
,
2009
, “
Stability of Confined Thin-Walled Steel Cylinders Under External Pressure
,”
Int. J. Mech. Sci.
,
51
, pp.
21
32
.10.1016/j.ijmecsci.2008.11.006
10.
Malta
,
E. R.
,
Martins
,
C. A.
,
Gay Neto
,
A.
, and
Toni
,
F. G.
,
2012
, “
An Investigation About the Shape of the Collapse Mode of Flexible Pipe
,”
22nd International Ocean and Polar Engineering Conference
.
11.
Gay Neto
,
A.
,
Martins
,
C. A.
,
Malta
,
E. R.
,
Godinho
,
C. A. F.
,
Barbosa Neto
,
T. F.
, and
Lima
,
E. A.
,
2012
, “
Wet and Dry Collapse of Straight and Curved Flexible Pipes: A 3D FEM Modeling
,”
22nd International Ocean and Polar Engineering Conference
.
12.
API Recommended Practice 17B,
2002
,
Information Handling Services
.
You do not currently have access to this content.