A numerical study on the dynamic response of a generic rigid water-landing object (WLO) during water impact is presented in this paper. The effect of this impact is often prominent in the design phase of the re-entry project to determine the maximum force for material strength determination to ensure structural and equipment integrity, human safety and comfort. The predictive capability of the explicit finite-element (FE) arbitrary Lagrangian-Eulerian (ALE) and smoothed particle hydrodynamics (SPH) methods of a state-of-the-art nonlinear dynamic finite-element code for simulation of coupled dynamic fluid structure interaction (FSI) responses of the splashdown event of a WLO were evaluated. The numerical predictions are first validated with experimental data for maximum impact accelerations and then used to supplement experimental drop tests to establish trends over a wide range of conditions including variations in vertical velocity, entry angle, and object weight. The numerical results show that the fully coupled FSI models can capture the water-impact response accurately for all range of drop tests considered, and the impact acceleration varies practically linearly with increase in drop height. In view of the good comparison between the experimental and numerical simulations, both models can readily be employed for parametric studies and for studying the prototype splashdown under more realistic field conditions in the oceans.

References

References
1.
Von Karman
,
T.
,
1929
, “
The Impact of Seaplane Floats During Landing
,” NACA TN 321, National Advisory Committee for Aeronautics, Washington, DC.
2.
Wagner
,
H.
,
1932
, “
Trans. Phenomena Associated With Impacts and Sliding on Liquid Surfaces
,”
J. Math. Mech.
,
12
(
4
), pp.
193
215
.
3.
Miloh
,
T.
,
1991
, “
On the Initial-Stage Slamming of a Rigid Sphere in a Vertical Water Entry
,”
Appl. Ocean Res.
,
13
(
1
), pp.
43
48
.10.1016/S0141-1187(05)80039-2
4.
Brooks
,
J. R.
, and
Anderson
,
L. A.
,
1994
, “
Dynamics of a Space Module Impacting Water
,”
J. Spacecr. Rockets
,
31
(
3
), pp.
509
515
.10.2514/3.26468
5.
Zhao
,
R.
,
Faltinsen
,
O. M.
, and
Aarsnes
,
J. V.
,
1996
, “
Water Entry of Arbitrary Two-Dimensional Sections With and Without Flow Separation
,”
Proceedings of the 21st Symposium on Naval Hydrodynamics
, National Academy Press, Washington, DC, pp.
408
423
.
6.
Faltinsen
,
O. M.
,
1999
, “
Water Entry of a Wedge by Hydroelastic Orthotropic Plate Theory
,”
J. Ship Res.
,
43
(
3
), pp.
180
193
.
7.
Scolan
,
Y. M.
, and
Korobkin
,
A. A.
,
2001
, “
Three-Dimensional Theory of Water Impact. Part 1. Inverse Wagner problem
,”
J. Fluid Mech.
,
440
, pp.
293
326
.10.1017/S002211200100475X
8.
Souli
,
M.
,
Olovsson
,
L.
, and
Do
,
I.
,
2002
, “
ALE and Fluid-Structure Interaction Capabilities in LS-DYNA
,”
7th International LS-DYNA Users Conference
.
9.
Korobkin
,
A. A.
, and
Scolan
,
Y. M.
,
2006
, “
Three-Dimensional Theory of Water Impact. Part 2. Linearized Wagner Problem
,”
J. Fluid Mech.
,
549
, pp.
343
373
.10.1017/S0022112005008049
10.
Tutt
,
B. A.
, and
Taylor
,
A. P.
,
2004
, “
The Use of LS-DYNA to Simulate the Water Landing Characteristics of Space Vehicles
,”
8th International LS-DYNA Users Conference
, Dearborn, MI, May 2–4.
11.
Melis
,
E. M.
, and
Bui
,
K.
,
2002
, “
Characterization of Water Impact Splashdown Event of Space Shuttle Solid Rocket Booster Using LS-DYNA
,”
7th International LS-DYNA Users Conference
, Dearborn, MI, May 19–21.
12.
Korobkin
,
A. A.
,
2005
, “
Three-Dimensional Nonlinear Theory of Water Impact
,”
18th International Congress of Mechanical Engineering (COBEM)
, Ouro Preto, Minas Gerais, Brazil.
13.
Seddon
,
C. M.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
, pp.
1045
1067
.10.1016/j.ijimpeng.2004.09.002
14.
Wang
,
J. T.
, and
Lyle
,
K. H.
,
2007
, “
Simulating Space Capsule Water Landing With Explicit Finite Element Method
,”
48th AIAA/ASME Conference
, Waikiki, HI, pp.
23
26
.
15.
Jackson
,
K. E.
, and
Fuchs
,
Y. T.
,
2008
, “
Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section Into Water
,”
10th International LS-DYNA Users Conference
, Dearborn, MI, June 8–10.
16.
Vandamme
,
J.
,
Zou
,
Q.
, and
Reeve
,
D. E.
,
2011
, “
Modeling Floating Object Entry and Exit Using Smoothed Particle Hydrodynamics
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
137
(
5
), pp.
213
224
.10.1061/(ASCE)WW.1943-5460.0000086
17.
Challa
,
R.
,
Yim
,
S. C.
,
Idichandy
,
V. G.
, and
Vendhan
,
C. P.
,
2014
, “
Rigid-Body Water-Surface Impact Dynamics: Experiment and Semi-Analytical Approximation
,”
ASME J. Offshore Mech. Arctic Eng.
,
136
, p.
011102
.10.1115/1.4025653
18.
Scolan
,
Y. M.
, and
Korobkin
,
A. A.
,
2012
, “
Hydrodynamic Impact (Wagner) Problem and Galin's Theorem
,”
27th International Workshop on Water Waves and Floating Bodies
, Copenhagen, Denmark.
19.
Belytschko
,
T.
,
Flanagran
,
D. F.
, and
Kennedy
,
J. M.
,
1982
, “
Finite Element Method With User-Controlled Meshes for Fluid-Structure Interactions
,”
J. Comput. Methods Appl. Mech. Eng.
,
33
, pp.
689
723
.10.1016/0045-7825(82)90127-X
20.
Hallquist
,
J. O.
,
1998
, “
LS-DYNA Theoretical Manual
,” Livermore Software Technology Corporation.
21.
Souli
,
M.
, and
Benson
,
D. J.
2010
, Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction Numerical,” Wiley Publications, New York.
22.
Dalrymple
,
R. A.
, and
Rogers
,
B. D.
,
2006
, “
Numerical Modeling of Water Waves With the SPH Method
,”
Coastal Eng. J.
,
53
(
2–3
), pp.
141
147
.10.1016/j.coastaleng.2005.10.004
23.
Faltinsen
,
O. M.
,
2005
,
Hydrodynamics of High-Speed Marine Vehicles
,
Cambridge University
, New York.
24.
Hirano
,
Y.
, and
Miura
,
K.
,
1970
, “
Water Impact Accelerations of Axially Symmetric Bodies
,”
J. Spacecr. Rockets
,
7
(
6
), pp.
762
764
.10.2514/3.30037
25.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Nonspherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
, pp.
375
389
.
26.
Lucy
,
L.
,
1977
, “
A Numerical Approach to Testing of the Fusion Process
,”
Astron. J.
,
88
, pp.
1013
1024
.10.1086/112164
27.
Herault
,
A.
,
Vicari
,
A.
,
Negro
,
C.
, and
Dalrymple
,
R. A.
,
2009
, “
Modeling Water Waves in the Surf Zone With GPU-SPHysics
,”
4th International SPHERIC Workshop
, Nantes, France, pp.
27
29
.
You do not currently have access to this content.