Reliable prediction of scour depth is important in engineering analysis concerned with pipeline stability. The aim of this study is to develop an accurate formula for prediction of the current-induced scour depth under pipelines. Previous experimental data are collected and used as a database by which to study the effect of different parameters on the scour depth. Decision tree and nonlinear regression approaches are used to develop engineering design formulae for estimation of the current induced scour depth in both live bed and clear water conditions. It is demonstrated that the proposed formulas are more accurate than previous ones in predicting the scour depth in all conditions. Probabilistic formulas are also presented for different levels of risk, aimed at safe and economic design of submerged pipelines.

References

References
1.
Mao
,
Y.
,
1986
, “
The Interaction Between a Pipeline and an Erodible Bed
,” Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.
2.
Fredsøe
,
J.
,
Hansen
,
E. A.
,
Mao
,
Y.
, and
Sumer
,
B. M.
,
1988
, “
Three-Dimensional Scour Below Pipelines
,”
ASME J. Offshore Mech. Arc. Eng.
,
110
(
4
), pp.
373
379
.10.1115/1.3257075
3.
Sumer
,
B. M.
,
Mao
,
Y.
, and
Fredsøe
,
J.
,
1988
, “
Interaction Between Vibrating Pipe and Erodible Bed
,”
Wat. Port Coast. Ocean Eng.
,
114
, pp.
81
94
.10.1061/(ASCE)0733-950X(1988)114:1(81)
4.
Sumer
,
B. M.
,
Truelsen
,
C.
,
Sichmann
,
T.
, and
Fredsøe
,
J.
,
2001
, “
Onset of Scour Below Pipelines and Self-Burial
,”
Coastal Eng.
,
42
(
4
), pp.
313
335
.10.1016/S0378-3839(00)00066-1
5.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2002
,
The Mechanics of Scour in the Marine Environment
,
World Scientific
,
Singapore
.
6.
Bijker
,
E. W.
, and
Leeuwestein
,
W.
,
1984
, “
Interaction Between Pipelines and the Seabed Under the Influence of Waves and Currents
,”
Proc. IUTAM-IUGG Symposium
,
Denness, B.
,
(ed.), Graham
and
Trotman
,
London
, pp.
235
242
.
7.
Dey
,
S.
, and
Singh
,
N. P.
,
2008
, “
Clear-Water Scour Below Underwater Pipelines Under Steady Flow
,”
J. Hydr. Eng.
,
134
, pp.
588
600
.10.1061/(ASCE)0733-9429(2008)134:5(588)
8.
Ibrahim
,
A.
, and
Nalluri
,
C.
,
1986
, “
Scour Prediction Around Marine Pipelines
,”
Proc., 5th Int. Symp. on Offshore Mechanics and Arctic Engineering, American Society of Mechanical
Engineers, pp.
679
684
.
9.
Kjeldsen
,
S. P.
,
Gjørsvik
,
O.
,
Bringaker
,
K. G.
, and
Jacobsen
,
J.
,
1973
, “
Local Scour Near Offshore Pipelines
,”
Proc., 2nd Int. Conf. on Port and Ocean Engineering Under Arctic Conditions
, pp.
308
331
.
10.
Lucassen
,
R. J.
,
1984
, “
Scour Underneath Submarine Pipelines
,” M.Sc. thesis, Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands.
11.
Mousavi
,
M. E.
,
Yeganeh-Bakhtiary
,
A.
, and
Enshaei
,
N.
,
2006
, “
Equilibrium Profile of Current-Induced Scour Around Submarine Pipelines
,”
Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering
, pp.
781
785
.
12.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1990
, “
Scour Below Pipelines in Waves
,”
J. Wat. Port Coast. Ocean Eng.
,
116
, pp.
307
323
.10.1061/(ASCE)0733-950X(1990)116:3(307)
13.
Sumer
,
B. M.
,
Kozakiewicz
,
A.
,
Fredsøe
,
J.
, and
Deigaard
,
R.
,
1996
, “
Velocity and Concentration Profiles in Sheet-Flow Layer of Movable Bed
,”
J. Hydr. Eng.
,
122
(
10
), pp.
549
558
.10.1061/(ASCE)0733-9429(1996)122:10(549)
14.
Mao
,
Y.
,
1988
, “
Seabed Scour Under Pipelines
,”
OMAE 1988 Houston, Proc. 7th Int. Conf. on Offshore Mechanics and Arctic Engineering, Am. Soc. Civ. Engineers
,
Houston, TX
, Feb. 7–12 pp.
33
38
.
15.
Yang
,
B.
,
Gao
,
F.-P.
,
Jeng
,
D.-S.
, and
Wu
,
Y.-X.
,
2008
, “
Experimental Study of Vortex-Induced Vibrations of a Pipeline Near an Erodible Sandy Seabed
,”
Ocean Eng.
,
35
(
3–4
), pp.
301
309
.10.1016/j.oceaneng.2007.11.001
16.
Chiew
,
Y. M.
,
1991
, “
Prediction of Maximum Scour Depth at Submarine Pipelines
,”
J. Hydr. Eng.
,
117
, pp.
452
466
.10.1061/(ASCE)0733-9429(1991)117:4(452)
17.
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Christiansen
,
N.
,
1992
, “
Scour Around Vertical Pile in Waves
,”
J. Wat. Port Coast. Ocean Eng.
,
118
, pp.
15
31
.10.1061/(ASCE)0733-950X(1992)118:1(15)
18.
Zang
,
Z.
,
Cheng
,
L.
,
Zhao
,
M.
,
Liang
,
D.
, and
Teng
,
B.
,
2009
, “
A Numerical Model for Onset of Scour Below Offshore Pipelines
,”
Coastal Eng.
,
56
(
4
), pp.
458
466
.10.1016/j.coastaleng.2008.10.001
19.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2001
, “
Scour Around Pile in Combined Waves and Current
,”
J. Hydr. Eng.
,
127
, pp.
403
411
.10.1061/(ASCE)0733-9429(2001)127:5(403)
20.
Moncada
,
A. T.
, and
Aguirre
,
J.
,
1999
, “
Scour Below Pipeline in River Crossing
,”
J. Hydr. Eng.
,
125
, pp.
953
958
.10.1061/(ASCE)0733-9429(1999)125:9(953)
21.
Soulsby
,
R. L.
, and
Whitehouse
,
R. J. S. W.
,
1997
, “
Threshold of Sediment Motion in Coastal Environments
,”
Pacific Coasts and Ports 97, Christchurch, University of Canterbury
,
New Zealand
, pp.
149
154
.
22.
Azamathulla
H. Md.
,
Guven
,
A.
, and
Kagan Demir
,
Y.
,
2011
, “
Linear Genetic Programming to Scour Below Submerged Pipeline
,”
Ocean Eng.
,
38
, pp.
995
1000
.10.1016/j.oceaneng.2011.03.005
23.
Azamathulla
,
H. Md.
, and
Zakaria
,
N. A.
,
2011
, “
Prediction of Scour Below Submerged Pipeline Crossing a River Using ANN
,”
IWA Water Sci. Tech.
,
6
, pp.
2225
2230
.10.2166/wst.2011.459
24.
Zanganeh
,
M.
,
Yeganeh-Bakhtiary
,
A.
, and
Bakhtyar
,
R.
,
2011
, “
Combined Particle Swarm Optimization and Fuzzy Inference System Model for Estimation of Current-Induced Scour Beneath Marine Pipelines
,”
J. Hydro Inf.
,
13
(
3
), pp.
558
573
.10.2166/hydro.2010.101
25.
Quinlan
,
J. R.
,
1992
, “
Learning With Continuous Classes
,”
Proceedings of AI’92
,
Adams
, A. and
Sterling
, L. eds.,
World Scientific
, Singapore, pp. 343–348.
26.
Bhattacharya
,
B.
,
Price
,
R. K.
, and
Solomatine
,
D. P.
,
2007
, “
Machine Learning Approach to Modeling Sediment Transport
,”
J. Hydr. Eng.
,
133
, pp.
440
450
.10.1061/(ASCE)0733-9429(2007)133:4(440)
27.
Yeganeh-Bakhtiary
,
A.
,
Kazeminezhad
,
M.
, and
Etemad-Shahidi
,
A.
,
2011
,“
Euler–Euler Two-Phase Flow Simulation of Tunnel Erosion Beneath Marine Pipelines
,”
Appl. Ocean Res.
,
32
, pp.
137
146
.10.1016/j.apor.2011.01.001
28.
Etemad-Shahidi
,
A.
, and
Mahjoobi
,
J.
,
2009
, “
Comparison Between M5 Model Tree and Neural Networks for Prediction of Significant Wave Height in Lake Superior
,”
Ocean Eng.
,
26
, pp.
1175
1181
.10.1016/j.oceaneng.2009.08.008
29.
Breiman
,
L.
,
Friedman
,
J.
,
Olshen
,
R.
, and
Stone
,
C.
,
1984
,
Classification and Regression Tree
,
Wadsworth Statistical Press
,
Belmont CA
.
30.
Mahjoobi
,
J.
, and
Etemad-Shahidi
,
A.
,
2008
, “
An Alternative Approach for Prediction of Significant Wave Height Based on Classification and Regression Trees
,”
Appl. Ocean Res.
,
30
, pp.
172
177
.10.1016/j.apor.2008.11.001
31.
Ayoubloo
,
M. K.
,
Etemad-Shahidi
,
A.
, and
Mahjoobi
,
J.
,
2010
, “
Evaluation of Regular Wave Scour Around a Circular Pile Using Data Mining Approaches
,”
Appl. Ocean Res.
,
32
, pp.
34
39
.10.1016/j.apor.2010.05.003
32.
Ghosh
,
S.
, and
Katkar
,
S.
,
2012
, “
Modeling Uncertainty Resulting From Multiple Downscaling Methods in Assessing Hydrological Impacts of Climate Change
,”
Water Res. Manage.
,
26
, pp.
3559
3579
.10.1007/s11269-012-0090-5
33.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1996
, “
Scour Around Pipeline in Combined Wave and Current
,”
Proc., 15th International Symposium on Offshore Mechanics and Arctic Engineering
, pp.
595
602
.
34.
Manache
,
G.
, and
Melching
,
C. S.
,
2008
, “
Identification of Reliable Regression and Correlation-Based Sensitivity Measures for Importance Ranking of Water-Quality Model Parameters
,”
Env. Mod. Soft.
,
23
, pp.
549
562
.10.1016/j.envsoft.2007.08.001
35.
Etemad-Shahidi
,
A.
,
Yasa
,
R.
, and
Kazeminezhad
,
M. H.
,
2011
, “
Prediction of Wave-Induced Scour Depth Under Submarine Pipelines Using Machine Learning Approach
,”
Appl. Ocean Res.
,
33
, pp.
54
59
.10.1016/j.apor.2010.11.002
You do not currently have access to this content.