A sediment transport calculation was proposed, which consistently considered the influence of laminar and turbulent resistance forces caused by infiltration/exfiltration. From a comparison of the nondimensional bed–load sediment transport rate, it was found to be essential to consider both laminar and turbulent resistance forces when formulating the influence of infiltration/exfiltration in sediment transport calculations. A three-dimensional coupled fluid–structure–sediment interaction model was improved using the proposed sediment transport calculation, and applied to tsunami-induced local scouring around an inland structure. Numerical results showed that consideration of infiltration/exfiltration improved the computational accuracy of the prediction of a scour hole formed around the seaward edge of the structure, and accordingly the improved model could capture the evolution of the scour hole with sufficient accuracy. This suggests that the improved model should be a useful tool for assessing tsunami-induced local scouring.

References

References
1.
Butt
,
T.
,
Russell
,
P.
, and
Turner
,
I. L.
,
2001
, “
The Influence of Swash Infiltration-Exfiltration on Beach Face Sediment Transport: Onshore or Offshore?
,”
Coastal Eng.
,
42
(
1
), pp.
35
52
.10.1016/S0378-3839(00)00046-6
2.
Nielsen
,
P.
,
1992
,
Coastal Bottom Boundary Layers and Sediment Transport, Advanced Series on Ocean Engineering
,
World Scientific
,
Singapore
, Vol.
4
,
340
p.
3.
Turner
,
I. L.
, and
Masselink
,
G.
,
1998
, “
Swash Infiltration-Exfiltration and Sediment Transport
,”
J. Geophys. Res.
,
103
(
C13
), pp.
30813
30824
.10.1029/98JC02606
4.
Asano
,
T.
, and
Yonenaga
,
T.
,
2000
, “
Infiltration Effects Into a Foreshore Sand Layer on Sediment Transport in a Swash Zone
,”
Proc. Coastal Eng.
, Kobe, Japan,
47
, pp.
511
515
(in Japanese).10.2208/proce1989.47.511
5.
Yeh
,
H.
,
Francis
,
M.
,
Peterson
,
C.
,
Katada
,
T.
,
Latha
,
G.
,
Chadha
,
R. K.
,
Singh
,
J. P.
, and
Raghuraman
,
G.
,
2007
, “
Effects of the 2004 Great Sumatra Tsunami: Southeast Indian Coast
,”
J. Waterway Port Coastal Ocean Eng.
,
133
(
6
), pp.
382
400
.10.1061/(ASCE)0733-950X(2007)133:6(382)
6.
Tonkin
,
S.
,
Yeh
,
H.
,
Kato
,
F.
, and
Sato
,
S.
,
2003
, “
Tsunami Scour Around a Cylinder
,”
J. Fluid Mech.
,
496
, pp.
165
192
.10.1017/S0022112003006402
7.
Nakamura
,
T.
,
Kuramitsu
,
Y.
, and
Mizutani
,
N.
,
2008
, “
Tsunami Scour Around a Square Structure
,”
JSCE Coastal Eng. J.
,
50
(
2
), pp.
209
246
.10.1142/S057856340800179X
8.
Nakamura
,
T.
,
Yim
,
S. C.
, and
Mizutani
,
N.
,
2013
, “
Three-Dimensional Fluid–Structure–Sediment Interaction Modeling With Application to Local Scouring Around a Movable Cylinder
,”
ASME J. Offshore Mech. Arctic Eng.
,
135
(
3
), p.
031105
.10.1115/1.4023797
9.
Engelund
,
F.
, and
Fredsøe
,
J.
,
1976
, “
A Sediment Transport Model for Straight Alluvial Channels
,”
Nordic Hydrol.
,
7
, pp.
293
306
.10.2166/nh.1976.019
10.
Nakagawa
,
H.
, and
Tsujimoto
,
T.
,
1986
,
Hydrodynamics of Alluvial Channel Flow
,
Gihodo Shuppan
,
Tokyo, Japan
,
310
p. (in Japanese).
11.
Sakai
,
T.
,
Gotoh
,
H.
,
Harada
,
E.
,
Hama
,
T.
, and
Imoto
,
T.
,
2001
, “
Effect of Wave-Induced Liquefaction of Seabed on Sediment Transport Rate
,”
Proc. Coastal Eng.
, Kumamoto, Japan,
48
, pp.
981
985
(in Japanese).10.2208/proce1989.48.981
12.
Kunugi
,
T.
,
2000
, “
MARS for Multiphase Calculation
,”
Comput. Fluid Dyn. J.
,
9
(
1
), pp.
1
10
. Available at: http://members3.jcom.home.ne.jp/cfdj1514/cfdj_list/cfdj_v09.html
13.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
,
2001
, “
Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel Due to Vortex Shedding
,”
JSME Int. J. Seri. B Fluids Thermal Eng.
,
44
(
4
), pp.
526
535
.10.1299/jsmeb.44.526
14.
Mizutani
,
N.
,
McDougal
,
W. G.
, and
Mostafa
,
A. M.
,
1996
, “
BEM-FEM Combined Analysis of Nonlinear Interaction Between Wave and Submerged Breakwater
,”
Proc. 25th Int. Conf. on Coastal Eng.
,
Orlando, FL
, pp.
2377
2390
.
15.
Brackbill
,
J. U.
,
Kothe
,
B. D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.10.1016/0021-9991(92)90240-Y
16.
Horiuti
,
K.
,
1997
, “
A New Dynamic Two-Parameter Mixed Model for Large-Eddy Simulation
,”
Phys. Fluids
,
9
(
11
), pp.
3443
3464
.10.1063/1.869454
17.
Kawasaki
,
K.
,
1999
, “
Numerical Simulation of Breaking and Post-Breaking Wave Deformation Process Around a Submerged Breakwater
,”
JSCE Coastal Eng. J.
,
41
(
3–4
), pp.
201
223
.10.1142/S0578563499000139
18.
Coastal Development Institute of Technology (CDIT)
,
2001
,
Research and Development of Numerical Wave Flume (Super Roller Flume for Computer Aided Design of Maritime Structure)
,
CDIT
,
Tokyo, Japan
,
296
p. (in Japanese).
19.
Nakamura
,
T.
,
Shinoda
,
Y.
,
Mizutani
,
N.
, and
Koyama
,
H.
,
2011
, “
Three-Dimensional Numerical Analysis of Jet-Induced Local Scouring in Front of Quay Walls and Its Countermeasure Using Filter Units
,”
JSCE Coastal Eng. J.
,
53
(
1
), pp.
41
62
.10.1142/S0578563411002252
You do not currently have access to this content.