This paper describes an efficient reduced order model (ROM) applied in the aerodynamic analysis of bluff bodies. The proposed method, which is based on eigensystem realization algorithm (ERA), uses the impulse response of the system obtained by computational fluid dynamics (CFD) analysis to construct a ROM that can accurately predict the response of the system to any arbitrary input. In order to study the performance of the proposed technique, three different geometries including elliptical and rectangular sections as well as the deck cross section of Great Belt Bridge (GBB) were considered. The aerodynamic coefficients of the impulse responses of the three sections are used to construct the corresponding ROM for each section. Then, the aerodynamic coefficients from an arbitrary sinusoidal input obtained by CFD are compared with the predicted one using the ROM. The results presented illustrate the ability of the proposed technique to predict responses of the systems to arbitrary sinusoidal and other generic inputs, with significant savings in terms of CPU time when compared with most CFD codes. The methodology described in this paper has wide application in many offshore engineering problems where flexible structures interact with unsteady fluid flow, and should be useful in preliminary design, in design optimization, and in control algorithm development.

References

References
1.
Scanlan
,
R. H.
,
1978
, “
The Action of Flexible Bridges Under Wind, I: Flutter Theory
,”
J. Sound Vib.
,
60
(
2
), pp.
187
199
.10.1016/S0022-460X(78)80028-5
2.
Davenport
,
A. G.
,
1962
, “
Buffeting of a Suspension Bridge by Stormy Winds
,”
J. Struct. Div.
,
88
(
ST3
), pp.
233
268
.
3.
Selvam
,
R. P.
,
Bosch
,
H.
, and
Joshi
,
R.
,
2010
, “
Comparison of 2D and 3D CFD Modeling of Bridge Aerodynamics
,”
Proceedings of the Fifth International Symposium on Computational Wind Engineering (CWE2010)
, Chapel Hill, NC.
4.
Szabó
,
G.
, and
Györgyi
,
J.
,
2009
, “
Three-Dimensional Fluid-Structure Interaction Analysis for Bridge Aeroelasticity
,”
Proceedings of the World Congress on Engineering and Computer Science
, San Francisco, CA.
5.
Costa
,
C.
, and
Borri
,
C.
,
2006
, “
Application of Indicial Functions in Bridge Deck Aeroelasticity
,”
J. Wind Eng. Ind. Aerodyn.
,
94
, pp.
859
881
.10.1016/j.jweia.2006.06.007
6.
Bruno
,
L.
,
2003
, “
The Validity of Numerical Simulations of Vortical Structures Around a Bridge Deck
,”
Math. Comput. Model.
,
37
, pp.
795
828
.10.1016/S0895-7177(03)00087-6
7.
Xiang
,
H.
, and
Ge
,
Y.
,
2002
, “
Refinements on Aerodynamic Stability Analysis of Super Long-Span Bridges
,”
J. Wind Eng. Ind. Aerodyn.
,
90
, pp.
1493
1515
.10.1016/S0167-6105(02)00266-0
8.
Larsen
,
A.
, and
Walther
,
J. H.
,
1997
, “
Aeroelastic Analysis of Bridge Girder Sections Based on Discrete Vortex Simulations
,”
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
253
265
.10.1016/S0167-6105(97)00077-9
9.
Kuroda
,
S.
,
1997
, “
Numerical simulation of flow around a box girder of a long span suspension bridge
”,
J. Wind Eng. Ind. Aerodyn.
,
67–68
, pp.
239
252
.10.1016/S0167-6105(97)00076-7
10.
Walther
,
J. H.
,
1994
, “
DVM for 2D Flow Past Bodies of Arbitrary Shape Undergoing Prescribed Rotary and Translational Motion
,” Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.
11.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I - Coherent Structures. II - Symmetries and Transformations. III - Dynamics and Scaling
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
12.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
, pp.
539
575
.10.1146/annurev.fl.25.010193.002543
13.
Epureanu
,
B. I.
,
Hall
,
K. C.
, and
Dowell
,
E. H.
,
2001
, “
Reduced-Order Models of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Coupling
,”
J. Fluids Struct.
,
15
, pp.
255
273
.10.1006/jfls.2000.0334
14.
Raveh
,
D. E.
,
2001
, “
Reduced Order Models for Nonlinear Unsteady Aerodynamics
,”
AIAA J.
,
39
(
8
), pp.
1417
1429
.10.2514/2.1473
15.
Silva
,
W. A.
, and
Bartels
,
R. E.
,
2004
, “
Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code
,”
J. Fluids Struct.
,
19
, pp.
729
744
.10.1016/j.jfluidstructs.2004.03.004
16.
Allen
,
C. B.
,
Taylor
,
N. V.
,
Fenwick
,
C. L.
,
Gaitonde
,
A. L.
, and
Jones
,
D. P.
,
2005
, “
A Comparison of Full Non-Linear and Reduced Order Aerodynamic Models in Control Law Design Using a Two-Dimensional Aerofoil Model
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1628
1648
.10.1002/nme.1421
17.
Gaitonde
,
A. L.
, and
Jones
,
D. P.
,
2006
, “
Study of Linear Response Identification Techniques and Reduced-Order Model Generation for a 2D CFD Scheme
,”
Int. J. Numer. Methods Fluids
,
52
, pp.
1361
1402
.10.1002/fld.1232
18.
Antoulas
,
A. C.
, and
Willems
,
J. C.
,
1993
, “
A Behavioral Approach to Linear Exact Modeling
,”
IEEE Trans. Autom. Control
,
38
, pp.
1776
1802
.10.1109/9.250557
19.
Antoulas
,
A. C.
,
1986
, “
On Recursiveness and Related Topics in Linear Systems
,”
IEEE Trans. Autom. Control
,
31
, pp.
1121
1135
.10.1109/TAC.1986.1104191
20.
Tang
,
D.
, and
Kholodar
,
D.
,
2001
, “
System Identification and Proper Orthogonal Decomposition Method Applied to Unsteady Aerodynamics
,”
AIAA J.
,
39
(
8
), pp.
1569
1576
.10.2514/2.1482
21.
Kerschent
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
, pp.
147
169
.10.1007/s11071-005-2803-2
22.
Moore
,
B. C.
,
1981
, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
17
32
.10.1109/TAC.1981.1102568
23.
Rowley
,
C. W.
,
2005
, “
Model Reduction for Fluids Using Balanced Proper Orthogonal Decomposition
,”
Int. J. Bifurcation Chaos
,
15
(
3
), pp.
997
1013
.10.1142/S0218127405012429
24.
Silva
,
W. A.
,
1999
, “
Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
,”
Proceedings of the CEAS/AIAA/ICASE/NASA International Forum on Aeroelasticity and Structural Dynamics
, June.
25.
Silva
,
W. A.
,
2007
, “
Recent Enhancements to the Development of CFD-Based Aeroelastic Reduced-Order Models
,”
Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures
, Structural Dynamics, and Materials Conference, April.
26.
Kim
,
T.
,
2005
, “
Efficient Reduced-Order System Identification for Linear Systems with Multiple Inputs
,”
AIAA J.
,
43
(
7
), pp.
1455
1464
.10.2514/1.11225
27.
Ebrahimnejad
,
L.
,
Yadollahi Farsani
,
H.
,
Valentine
,
D. T.
,
Janoyan
,
K. D.
, and
Marzocca
,
P.
,
2012
, “
A Study on the Use of Reduced Order Models for Unsteady Fluid Dynamic Analysis of Flexible Structures
,”
Proceedings of the ASME 31st International Conference on Ocean
, Offshore and Arctic Engineering, Paper No. OMAE2012-84177.
28.
Juang
,
J. N.
, and
Pappa
,
R. S.
,
1985
, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction
,”
J. Guid. Control Dyn.
,
8
(
5
), pp.
620
627
.10.2514/3.20031
29.
Yadollahi Farsani
,
H.
,
Ebrahimnejad
,
L.
,
Marzocca
,
P.
,
Janoyan
,
K. D.
, and
Valentine
,
D. T.
,
2012
, “
Computational Predictions of Two-Dimensional Unsteady Viscous Flows Around Bluff Bodies
,”
Proceedings of the ASME 31st International Conference on Ocean
, Offshore and Arctic Engineering, Paper No. OMAE2012-84178.
You do not currently have access to this content.