The present work is motivated by phenomena occurring in the flow field around structures partly submerged in water. A three-dimensional (3D) unsteady flow around a rectangular cylinder is studied for four different submergence ratios by using computational fluid dynamics (CFD) tools with the large eddy simulation (LES) turbulence model. The simulation results are compared to particle image velocimetry (PIV) measurements at the Reynolds number Re = 12,100 and the Froude number Fr = 0.26. The focus in our investigation is on the characterization of the behavior of vortex structures generated by separated flow. Another target in the study is to obtain a better knowledge of the hydrodynamic forces acting on a semi-submerged structure. The computed force coefficients are compared with experimental measurements.

References

References
1.
Norberg
,
C.
,
1993
, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind Eng. Ind. Aerodyn.
,
49
(
1
), pp.
187
196
.10.1016/0167-6105(93)90014-F
2.
Awbi
,
H.
,
1983
, “
Effect of Blockage on the Strouhal Number of Two-Dimensional Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
12
(
3
), pp.
353
362
.10.1016/0167-6105(83)90055-7
3.
Deniz
,
S.
, and
Staubli
,
T.
,
1997
, “
Oscillating Rectangular and Octagonal Profiles: Interaction of Leading-and Trailing-Edge Vortex Formation
,”
J. Fluids Struct.
,
11
(
1
), pp.
3
31
.10.1006/jfls.1996.0065
4.
Kim
,
K. C.
,
Ji
,
H. S.
, and
Seong
,
S. H.
,
2003
, “
Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layer
,”
J. Wind Eng. Ind.Aerodyn
,
91
(
5
), pp.
653
669
.10.1016/S0167-6105(02)00459-2
5.
Matsumoto
,
M.
,
Shirato
,
H.
,
Araki
,
K.
,
Haramura
,
T.
, and
Hashimoto
,
T.
,
2003
, “
Spanwise Coherence Characteristics of Surface Pressure Field on 2-D Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
1
), pp.
155
163
.10.1016/S0167-6105(02)00342-2
6.
Mills
,
R.
,
Sheridan
,
J.
, and
Hourigan
,
K.
,
2002
, “
Response of Base Suction and Vortex Shedding From Rectangular Prisms to Transverse Forcing
,”
J. Fluid Mech.
,
461
, pp.
25
49
.10.1017/S0022112002008534
7.
Nakamura
,
Y.
, and
Yoshimura
,
T.
,
1982
, “
Flutter and Vortex Excitation of Rectangular Prisms in Pure Torsion in Smooth and Turbulent Flows
,”
J. Sound Vib.
,
84
(
3
), pp.
305
317
.10.1016/0022-460X(82)90479-5
8.
Shadaram
,
A.
,
Fard
,
M. A.
, and
Rostamy
,
N.
,
2008
, “
Experimental Study of Near Wake Flow Behind a Rectangular Cylinder
,”
J. Appl. Sci.
,
5
(
8
), pp.
917
926
.10.3844/ajassp.2008.917.926
9.
Nakamura
,
Y.
, and
Ohya
,
Y.
,
1984
, “
The Effects of Turbulence on the Mean Flow Past Two-Dimensional Rectangular Cylinders
,”
J. Fluid Mech.
,
149
, pp.
255
273
.10.1017/S0022112084002640
10.
Nakaguchi
,
H.
,
Hashimoto
,
K.
, and
Muto
,
S.
,
1968
, “
An Experimental Study on Aerodynamic Drag of Rectangular Cylinders
,”
J. Jpn. Soc. Aeronaut. Space Sci.
,
16
(
1
), pp.
1
5
.10.2322/jjsass1953.16.1
11.
Washizu
,
K.
,
Ohya
,
A.
,
Otsuki
,
Y.
, and
Fujii
,
K.
,
1978
, “
Aeroelastic Instability of Rectangular Cylinders in a Heaving Mode
,”
J. Sound Vib.
,
59
(
2
), pp.
195
210
.10.1016/0022-460X(78)90500-X
12.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
13.
Knisely
,
C.
,
1990
, “
Strouhal Numbers of Rectangular Cylinders at Incidence: A Review and New Data
,”
J. Fluids Struct.
,
4
(
4
), pp.
371
393
.10.1016/0889-9746(90)90137-T
14.
Bearman
,
P. W.
, and
Trueman
,
D. M.
, 1972, “
An Investigation of the Flow Around Rectangular Cylinders
,”
Aeronaut. Q.
,
23
, pp.
229
237
.
15.
Malavasi
,
S.
, and
Blois
,
G.
,
2012
, “
Wall Effects on the Flow Structure Around a Rectangular Cylinder
,”
Meccanica
,
47
(
4
), pp.
805
815
.10.1007/s11012-009-9199-x
16.
Hemon
,
P.
, and
Santi
,
F.
,
2002
, “
On the Aeroelastic Behaviour of Rectangular Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
16
(
7
), pp.
855
889
.10.1006/jfls.2002.0452
17.
Kuroda
,
M.
,
Tamura
,
T.
, and
Suzuki
,
M.
,
2007
, “
Applicability of LES to the Turbulent Wake of a Rectangular Cylinder—Comparison With PIV Data
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
9
), pp.
1242
1258
.10.1016/j.jweia.2007.02.004
18.
Davis
,
R.
, and
Moore
,
E.
,
1982
, “
A Numerical Study of Vortex Shedding From Rectangles
,”
J. Fluid Mech.
,
116
(
3
), pp.
475
506
.10.1017/S0022112082000561
19.
Kondo
,
N.
, and
Yamada
,
S.
,
1995
, “
Third-Order Upwind Finite Element Computation of the Incompressible Navier-Stokes Equations—Part I. Computation of Flow around Rectangular Cylinders
,”
Comput. Methods Appl. Mech. Eng.
,
127
(
1
), pp.
87
97
.10.1016/0045-7825(95)00866-8
20.
Ohya
,
Y.
,
Nakamura
,
Y.
,
Ozono
,
S.
,
Tsurata
,
H.
, and
Nayakama
,
R.
,
1992
, “
A Numerical Study of Vortex Shedding From Flat Plates With Square Leading and Trailing Edges
,”
J. Fluid Mech.
,
236
, pp.
445
460
.10.1017/S0022112092001472
21.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1997
, “
Numerical Simulation of Unsteady Low-Reynolds Number Flow Around Rectangular Cylinders at Incidence
,”
J. Wind Eng. Ind. Aerodyn.
,
69
, pp.
189
201
.10.1016/S0167-6105(97)00154-2
22.
Yu
,
D.
, and
Kareem
,
A.
,
1998
, “
Parametric Study of Flow Around Rectangular Prisms Using LES
,”
J. Wind Eng. Ind. Aerodyn.
,
77–78
, pp.
653
662
.10.1016/S0167-6105(98)00180-9
23.
Shimada
,
K.
, and
Ishihara
,
T.
,
2002
, “
Application of a Modified K–E Model to the Prediction of Aerodynamic Characteristics of Rectangular Cross-Section Cylinders
,”
J. Fluids Struct.
,
16
(
4
), pp.
465
485
.10.1006/jfls.2001.0433
24.
Nakamura
,
Y.
,
Ohya
,
Y.
,
Ozono
,
S.
, and
Nakayama
,
R.
,
1996
, “
Experimental and Numerical Analysis of Vortex Shedding From Elongated Rectangular Cylinders at Low Reynolds Numbers 200–103
,”
J. Wind Eng. Ind. Aerodyn.
,
65
(
1–3
), pp.
301
308
.10.1016/S0167-6105(97)00048-2
25.
Tamura
,
T.
, and
Ito
,
Y.
,
1996
, “
Aerodynamic Characteristics and Flow Structures Around a Rectangular Cylinder With a Section of Various Depth/Breadth Ratios
,”
J. Struct. Constr. Eng.
,
486
, pp.
153
162
.
26.
Hirano
,
H.
,
Watanabe
,
S.
,
Maruoka
,
A.
, and
Ikenouchi
,
M.
,
1999
, “
Aerodynamic Characteristics of Rectangular Cylinders
,”
Int.J. Comput. Fluid Dyn.
,
12
(
2
), pp.
151
163
.10.1080/10618569908940820
27.
Krajnovic
,
S.
, and
Davidson
,
L.
, “
Flow Around a Three-Dimensional Bluff Body
,”
Proceedings of the 9th International Symposium on Flow Visualisation
,
Heriot-Watt University
,
Edinburgh
, pp.
1
9
.
28.
Lam
,
K.
,
Lin
,
Y.
,
Zou
,
L.
, and
Liu
,
Y.
,
2012
, “
Numerical Study of Flow Patterns and Force Characteristics for Square and Rectangular Cylinders With Wavy Surfaces
,”
J. Fluids Struct.
,
28
, pp.
359
377
.10.1016/j.jfluidstructs.2011.11.006
29.
Sohankar
,
A.
,
2008
, “
Large Eddy Simulation of Flow Past Rectangular-Section Cylinders: Side Ratio Effects
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
5
), pp.
640
655
.10.1016/j.jweia.2008.02.009
30.
Almeida
,
O.
,
Mansur
,
S.
, and
Silveira-Neto
,
A.
,
2008
, “
On the Flow Past Rectangular Cylinders: Physical Aspects and Numerical Simulation
,”
Therm. Eng.
,
7
(
1
), pp.
55
64
. Available at: http://demec.ufpr.br/reterm/ed_ant/13/artigo/ciencia/9-149.pdf.
31.
Noda
,
H.
, and
Nakayama
,
A.
,
2003
, “
Reproducibility of Flow Past Two-Dimensional Rectangular Cylinders in a Homogeneous Turbulent Flow by LES
,”
J. Wind Eng. Ind. Aerodyn.
,
91
(
1
), pp.
265
278
.10.1016/S0167-6105(02)00350-1
32.
Arslan
,
T.
,
Khoury
,
G. K. E.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
, “
Simulations of Flow Around a Three-Dimensional Square Cylinder Using LES and DNS
,”
Proceedings of the Seventh International Colloquium on Bluff Bodies Aerodynamics and Applications
,
Shanghai
,
China
, pp.
909
918
.
33.
Bartoli
,
G.
,
Bruno
,
L.
,
Buresti
,
G.
,
Ricciardelli
,
F.
,
Salvetti
,
M. V.
, and
Zasso
,
A.
,
2008
, “BARC Overview Document,” http://www.aniv-iawe.org/barc
34.
Bruno
,
L.
,
Fransos
,
D.
,
Coste
,
N.
, and
Bosco
,
A.
,
2010
, “
3D Flow Around a Rectangular Cylinder: A Computational Study
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
6-7
), pp.
263
-
276
.10.1016/j.jweia.2009.10.005
35.
Mannini
,
C.
, and
Schewe
,
G.
, “
Numerical Study on the Three-Dimensional Unsteady Flow Past a 5:1 Rectangular Cylinder Using the DES Approach
,”
Proceedings of the Thirteenth International Conference on Wind Engineering
,
Amsterdam, The Netherlands
, pp.
511
-
518
.
36.
Schewe
,
G.
, “
Influence of the Reynolds-Number on Flow-Induced Vibrations of Generic Bridge Sections
,”
Proceedings of the Bridges International Conference
,
Dubrovnik, Croatia
, pp.
351
-
358
.
37.
Schewe
,
G.
, “
Reynolds Number Effects in Flow Around a Rectangular Cylinder With Aspect Ratio 1:5
,”
Proceedings of the Fifth European and African Conference on Wind Engineering
,
Florence, Italy
.
38.
Arslan
,
T.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
, “
Calculations of the Flow Around Rectangular Shaped Floating Structures
,”
Proceedings of the Thirteenth International Conference on Wind Engineering
,
Amsterdam, The Netherlands
, pp.
523
-
530
.
39.
Malavasi
,
S.
, and
Guadagnini
,
A.
,
2007
, “
Interactions Between a Rectangular Cylinder and a Free-Surface Flow
,”
J. Fluids Struct.
,
23
(
8
), pp.
1137
1148
.10.1016/j.jfluidstructs.2007.04.002
40.
Malavasi
,
S.
,
Franzetti
,
S.
, and
Blois
,
G.
, “
PIV Investigation of Flow Around Submerged River Bridge Deck
,”
Proceedings of the International Conference of River Flows
,
Napoli, Italy
, pp.
601
608
.
41.
Malavasi
,
S.
, and
Blois
,
G.
,
2007
, “
Influence of the Free Surface on the Flow Pattern Around a Rectangular Cylinder
,”
Ninth International Symposium on Fluid Control, Measurements and Visualization
,
Tallahassee, FL
.
42.
Ting
,
F. C. K.
, and
Kim
,
Y.-K.
,
1994
, “
Vortex Generation in Water Waves Propagating Over a Submerged Obstacle
,”
Coastal Eng.
,
24
(
1–2
), pp.
23
49
.10.1016/0378-3839(94)90025-6
43.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
44.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, p.
1760
.10.1063/1.857955
45.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
46.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schellin
,
T.
, “
A Two-Fluid Navier-Stokes Solver to Simulate Water Entry
,”
Proceedings of the 22nd Symposium on Naval Hydrodynamics
,
Washington, D.C.
, pp.
277
289
.
47.
Kim
,
S.
,
2004
, “
Large Eddy Simulation Using Unstructured Meshes and Dynamic Subgrid-Scale Turbulence Models
,”
AIAA Paper No. 2548
.
48.
Malavasi
,
S.
, and
Guadagnini
,
A.
,
2003
, “
Hydrodynamic Loading on River Bridges
,”
J. Hydraul. Eng.
,
129
(
11
), pp.
854
861
.10.1061/(ASCE)0733-9429(2003)129:11(854)
49.
Mannini
,
C.
,
Weinman
,
K.
,
Soda
,
A.
, and
Schewe
,
G.
, “
Three-Dimensional Numerical Simulation of Flow Around a 1: 5 Rectangular Cylinder
,”
Proceedings of the 5th European and African Conference on Wind Engineering
,
Florence, Italy
.
You do not currently have access to this content.