The governing equations for large deflections of cables have a highly nonlinear and coupled nature, which precludes exact analytical solutions except in a few simplified cases. The present study demonstrates the utility of Groebner Basis methodology in facilitating the construction of approximate analytical and semianalytical Galerkin solutions in the geometrically nonlinear analysis of cable statics.

References

References
1.
Carrier
,
G.
,
1945
, “
On the Non-Linear Vibration Problem of the Elastic String
,”
Q. Appl. Math.
,
3
, pp.
157
165
.
2.
O'Brien
,
T.
,
1964
, “
Cable Movements Under Two-Dimensional Loads
,”
ASCE J. Struct. Div.
,
90
, pp.
89
123
.
3.
O'Brien
,
T.
,
1967
, “
General Solution of Suspended Cable System
,”
ASCE J. Struct. Div.
,
93
, pp.
1
26
.
4.
Buchanan
,
G.
,
1970
, “
Two-Dimensional Cable Analysis
,”
ASCE J. Struct. Div.
,
96
, pp.
1581
1587
.
5.
Buchanan
,
G.
, and
Ho
,
R.
,
1969
, “
Analysis of an Underwater Cable
,”
Ocean Eng.
,
1
, pp.
617
629
.10.1016/0029-8018(70)90005-3
6.
Irvine
,
H.
,
1975
, “
Statics of Suspended Cables
,”
ASCE J. Eng. Mech. Div.
,
101
, pp.
187
205
.
7.
Irvine
,
H.
, and
Sinclair
,
G.
,
1975
, “
The Suspended Elastic Cable Under the Action of Concentrated Vertical Loads
,”
Int. J. Solids Struct.
,
12
, pp.
187
205
.
8.
Ozdemir
,
H.
,
1979
, “
Finite Element Approach for Cable Problems
,”
Int. J. Solids Struct.
,
15
, pp.
427
437
.10.1016/0020-7683(79)90063-5
9.
Huang
,
Y.
, and
Lan
,
W.
,
2006
, “
Static Analysis of Cable Structure
,”
Appl. Math. Mech.
,
27
, pp.
1425
1430
.10.1007/s10483-006-1015-y
10.
Andreu
,
A.
,
Gil
,
L.
, and
Roca
,
P.
,
2006
, “
A New Deformable Catenary Element for the Analysis of Cable Net Structures
,”
Comput. Struct.
,
84
, pp.
1882
1890
.10.1016/j.compstruc.2006.08.021
11.
Bruno
,
D.
, and
Leonardi
,
A.
,
1999
, “
Nonlinear Structural Models in Cableway Transport Systems
,”
Sim. Practice Theory
,
7
, pp.
207
218
.10.1016/S0928-4869(98)00024-X
12.
Lepidi
,
M.
,
Gattulli
,
V.
, and
Vestroni
,
F.
,
2007
, “
Static and Dynamic Response of Elastic Suspended Cables With Damage
,”
Int. J. Solids Struct.
,
44
, pp.
8194
8212
.10.1016/j.ijsolstr.2007.06.009
13.
Zhu
,
Z.
, and
Meguid
,
S.
,
2006
, “
Elastodynamic Analysis of Low Tension Cables Using a New Curved Beam Element
,”
Int. J. Solids Struct.
,
43
, pp.
1490
1504
.10.1016/j.ijsolstr.2005.03.053
14.
Kim
,
W.
, and
Perkins
,
N.
,
2002
, “
Linear Vibration Characteristics of Cable-Buoy Systems
,”
J. Sound Vib.
,
252
, pp.
443
456
.10.1006/jsvi.2001.3849
15.
Hironaka
,
H.
,
1964
, “
Resolution of Singularities on an Algebraic Variety Over a Field of Characteristic Zero
,”
Ann. Math.
,
79
, pp.
109
326
.10.2307/1970486
16.
Buchberger
,
B.
,
1956
, “
An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Polynomial Ideal
,” Ph.D. thesis,
University of Innsbruck
, Innsbruck, Austria.
17.
Cox
,
D.
,
Little
,
J.
, and
O'Shea
,
D.
,
2007
,
Ideals, Varieties, and Algorithms
,
3rd ed.
,
Springer
,
New York
.
You do not currently have access to this content.