The propagation characteristics of the vibration power flow in a submerged cylindrical shell with joint discontinuity are investigated by the wave propagation approach. The motion of the cylindrical shell and the pressure field in fluid are described by the Flügge shell theory and the Helmholtz equation, respectively. And the dynamic equations of the system are obtained by the coupling between the shell and the fluid. Then, an analysis of the vibration power flow transmission and reflection at the joint discontinuity is presented and the power flow transmission ratio Tr through the joint discontinuity is studied. Results show that the joint discontinuity can reduce the mean value of the Tr and thus, reduce the energy level of the transmitted vibration, as it has the effect of partially reflecting some of the incident wave with relations to its physical and geometric parameters. The influences of the fluid and the material damping of the joint discontinuity are also studied.

References

References
1.
Harari
,
A.
,
1978
, “
Wave Propagation in a Cylindrical Shell With Joint Discontinuity
,”
Shock Vib. Bull.
,
48
, pp.
53
61
.
2.
Harari
,
A.
,
1977
, “
Wave Propagation in Cylindrical Shells With Finite Regions of Structural Discontinuity
,”
J. Acoust. Soc. Am.
,
63
(
5
), pp.
1196
1205
.10.1121/1.381633
3.
Fuller
,
C. R.
,
1981
, “
The Effects of Wall Discontinuities on the Propagation of Flexural Waves in Cylindrical Shells
,”
J. Sound Vib.
,
75
(
2
), pp.
207
228
.10.1016/0022-460X(81)90340-0
4.
Stanley
,
A. J.
, and
Ganesan
,
N.
,
1995
, “
Dynamic Response of Cylindrical Shells With Discontinuity in Thickness Subjected to Axisymmetric Load
,”
J. Sound Vib.
,
184
(
4
), pp.
703
724
.10.1006/jsvi.1995.0342
5.
Cuschieri
,
J. M.
, and
Feit
,
D.
,
1995
, “
Acoustic Scattering From a Fluid-Loaded Cylindrical Shell With Discontinuities: Single Plate Bulkhead
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
320
338
.10.1121/1.413681
6.
Cuschieri
,
J. M.
, and
Feit
,
D.
,
1995
, “
Acoustic Scattering From a Fluid-Loaded Cylindrical Shell With Discontinuities: Double Plate Bulkhead
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
339
352
.10.1121/1.413687
7.
Cuschieri
,
J. M.
, and
Feit
,
D.
,
1997
, “
Response Green's Function and Acoustic Scattering From a Fluid-Loaded Cylindrical Shell With Discontinuities
,”
Comput. Struct.
,
65
(
3
), pp.
337
384
.10.1016/S0045-7949(96)00254-4
8.
Chen
,
G.
, and
Zhu
,
S. J.
,
2004
, “
Effect of Discontinuity of Pipe Wall on Transmission Coefficient of Pure Torsion Wave
,”
J. Naval Uni. Eng.
,
16
(
2
), pp.
40
43
.
9.
Zhu
,
S. J.
, and
Chen
,
G.
,
2006
, “
Pipe Wall Discontinuity's Isolating the Bending Wave Passing Through the Pipe
,”
J. Ship Mech.
,
10
(
5
), pp.
142
149
.
10.
Christopher
,
D. P.
,
Linda
,
P. F.
, and
Donald
,
B. B.
,
2004
, “
Analytical-Numerical Matching for Fluid-Loaded Structures With Discontinuities
,”
J. Acoust. Soc. Am.
,
116
(
5
), pp.
2956
2968
.10.1121/1.1798272
11.
Muggleton
,
J. M.
, and
Brennan
,
M. J.
,
2005
, “
Axisymmetric Wave Propagation in Buried, Fluid-Filled Pipes: Effects of Wall Discontinuities
,”
J. Sound Vib.
,
281
(
3–5
), pp.
849
867
.10.1016/j.jsv.2004.02.045
12.
Mauro
,
C.
, and
Nicole
,
J. K.
,
2009
, “
Structural and Acoustic Responses of a Fluid-Loaded Cylindrical Hull With Structural Discontinuities
,”
Appl. Acoust.
,
70
(
7
), pp.
954
963
.10.1016/j.apacoust.2008.11.004
13.
Xu
,
M. B.
,
Zhang
,
W. H.
, and
Zhang
,
X. M.
,
1996
, “
The Effect of the Wall Joint on the Wave Propagation in Cylindrical Shells
,”
J. Huazhong Univ. Sci. Technol.
,
24
(
5
), pp.
72
75
.
14.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
,
1997
, “
The Effect of Wall Discontinuities on the Propagation of Power Flow in Cylindrical Shells
,”
J. Vib. Shock
,
16
(
3
), pp.
50
54
.
15.
Xu
,
M. B.
,
Zhang
,
X. M.
,
Zhang
,
W. H.
, and
Li
,
T. J.
,
1996
, “
The Control of Wall Joint on the Coupled Wave Propagation in a Fluid-Filled Shell
,”
J. Vib. Eng.
,
9
(
4
), pp.
389
394
.
16.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
,
1999
, “
The Effect of Wall Joint on the Vibrational Power Flow Propagation in a Fluid-Filled Shell
,”
J. Sound Vib.
,
224
(
3
), pp.
395
410
.10.1006/jsvi.1998.2191
17.
Chen
,
Z. X.
,
Jin
,
X. D.
,
Jiang
,
S. Q.
, and
Zhang
,
W. H.
,
2001
, “
Effects of Flanges and Material Discontinuities on Energy Flow Propagation in the Fluid-Filled Cylindrical Shell
,”
J. Vib. Eng.
,
14
(
4
), pp.
487
491
.
18.
Wilhelm
,
F.
,
1973
,
Stresses in Shells
,
2nd ed.
,
Springer-Verlag
,
New York
, pp.
205
214
.
19.
Zhang
,
X. M.
,
Liu
,
G. R.
, and
Lam
,
K. Y.
,
2001
, “
Coupled Vibration Analysis of Fluid-Filled Cylindrical Shells Using the Wave Propagation Approach
,”
Appl. Acoust.
,
62
(
3
), pp.
229
243
.10.1016/S0003-682X(00)00045-1
20.
Zhang
,
X. M.
,
2002
, “
Frequency Analysis of Submerged Cylindrical Shells With the Wave Propagation Approach
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1259
1273
.10.1016/S0020-7403(02)00059-0
21.
Scott
,
J. F. M.
,
1988
, “
The Free Modes of Propagation of an Infinite Fluid-Loaded Thin Cylindrical Shell
,”
J. Sound Vib.
,
125
(
2
), pp.
241
280
.10.1016/0022-460X(88)90282-9
22.
Brazier-Smith
,
P. R.
, and
Scott
,
J. F. M.
,
1991
, “
On the Determination of the Roots of Dispersion Equations by Use of Winding Number Integrals
,”
J. Sound Vib.
,
145
(
3
), pp.
503
510
.10.1016/0022-460X(91)90119-5
23.
Ivansson
,
S.
, and
Karasalo
,
I.
,
1993
, “
Computation of Modal Wavenumbers Using an Adaptive Wingding-Number Integral Method With Error Control
,”
J. Sound Vib.
,
161
(
1
), pp.
173
180
.10.1016/0022-460X(93)90410-D
24.
Xu
,
M. B.
,
1998
, “
Wave Propagation and Power Flow in a Cylindrical Shell-Fluid Coupled System
,”
Ph.D. thesis
,
Huazhong Univ. of Sci. and Tech.
,
Wu Han, China
.
25.
Wang
,
L. L.
, and
Zhu
,
Z. X.
,
2005
,
Basic Theory of Stress Wave
,
National Defense Industry Press
,
Beijing, China
, pp.
5
38
.
26.
Liu
,
L. H.
,
1990
,
The Application Technology of Viscoelastic Damping in Vibration and Noise Reduction
,
China Astronautic Publishing House
,
Beijing, China
, pp.
38
72
.
You do not currently have access to this content.