In this study, an Euler–Lagrange coupling two-phase flow model, namely movable bed simulator (MBS)-two-dimensional (2D) model was employed to explore the current-induced live-bed scour beneath marine pipelines. The fluid phase characteristics, such as velocity and pressure, were obtained by the Reynolds-averaged Navier–Stokes (RANS) equations with a k-ε turbulence closure model in a two-dimensional Eulerian grid, whereas the seabed beneath pipelines was traced as an assembly of discrete sand grains from the Lagrangian point of view. The live-bed scour was evolved as the motion of a granular media based on distinct element method (DEM) formulation, in which the frequent interparticle collision was described with a spring and dashpot system. The fluid flow was coupled to the sediment phase, considering the acting drag forces between. Comparison between the numerical result and experimental measurement confirms that the numerical model successfully estimates the bed profile and flow velocity field. It is evident that the fluid shear stress decreases with the increasing of gap ratio e/D. The numerical model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in live-bed scour beneath a marine pipeline.

References

References
1.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1992
, “
A Review of Wave/Current-Induced Scour Around Pipelines
,”
Proc. 23th International Coastal Engineering Conference, Venice, Italy
, Vol.
3
, pp.
2839
2850
.
2.
Kjeldsen
,
S. P.
,
Gjørsvik
,
O.
,
Bringaker
,
K. G.
, and
Jacobsen
,
J.
,
1973
, “
Local Scour Near Offshore Pipelines
,”
Proc. of 2nd International Conference on Ports and Ocean Engineering Under Arctic Conditions
,
University of Iceland
, pp.
308
331
.
3.
Lucassen
,
R. J.
,
1984
, “
Scour Underneath Submarine Pipelines
,”
Marine Tech. Res.
, The Netherlands, MATs Report No. PL-4 2A.
4.
Bearman
,
P. W.
, and
Zdravkovich
,
M. M.
,
1978
, “
Flow Around a Circular Cylinder Near a Plane Boundary
,”
J. Fluid Mech.
,
89
(
1
), pp.
33
47
.10.1017/S002211207800244X
5.
Mao
,
Y.
,
1986
, “
The Interaction Between a Pipeline and an Erodible Bed
,” Ph.D. dissertation, Technical University of Denmark, Lyngby, Denmark.
6.
Mousavi
,
M. E.
,
Yeganeh-Bakhtiary
,
A.
, and
Enshaei
,
N.
,
2006
, “
Equilibrium Profile of Current-Induced Scour Around Submarine Pipelines
,”
Proc. 25th International Conference on Offshore Mechanics and Arctic Engineering
,
ASME, Hamburg
, Paper No. 92383.
7.
Dey
,
S.
, and
Singh
,
N.
,
2008
, “
Clear-Water Scour Below Underwater Pipelines Under Steady Flow
,”
J. Hydraul. Eng.
,
134
, pp.
588
600
.10.1061/(ASCE)0733-9429(2008)134:5(588)
8.
Alper Oner
,
A.
,
Salih Kirkgoz
,
M.
, and
Sami Akoz
,
M.
,
2008
, “
Interaction of Current With Circular Cylinder Near Rigid Bed
,”
Ocean Eng.
,
35
(
14–15
), pp.
1492
1504
.10.1016/j.oceaneng.2008.06.005
9.
Chao
,
J. L.
, and
Henessy
,
P. V.
,
1972
, “
Local Scour Under Ocean Outfall Pipelines
,”
J. Water Pollut. Control Fed.
,
44
(
7
), pp.
1443
1447
.
10.
Li
,
F.
, and
Cheng
,
L.
,
1999
, “
Numerical Model for Local Scour Under Marine Pipelines
,”
J. Hydraul. Eng.
,
125
(
4
), pp.
400
406
.10.1061/(ASCE)0733-9429(1999)125:4(400)
11.
Liang
,
D.
, and
Cheng
,
L.
,
2005
, “
Numerical Modeling of Flow and Scour Below a Pipeline in Currents: Part I. Flow Simulation
,”
Coastal Eng.
,
52
(
1
), pp.
25
42
.10.1016/j.coastaleng.2004.09.002
12.
Liang
,
D.
,
Cheng
,
L.
, and
Li
,
F.
,
2005
, “
Numerical Modeling of Flow and Scour Below a Pipeline in Currents: Part II. Scour Simulation
,”
Coastal Eng.
,
52
(
1
), pp.
43
62
.10.1016/j.coastaleng.2004.09.001
13.
Dupuis
,
A.
, and
Chopard
,
B.
,
2002
, “
Lattice Gas Modeling of Scour Formation Under Submarine Pipelines
,”
J. Comput. Phys.
,
178
, pp.
161
174
.10.1006/jcph.2002.7025
14.
Zhao
,
Z.
, and
Fernando
,
H.
,
2007
, “
Numerical Simulation of Scour Around Pipelines Using an Euler–Euler Coupled Two-Phase Model
,”
Environ. Fluid Mech.
,
7
, pp.
121
142
.10.1007/s10652-007-9017-8
15.
Yeganeh-Bakhtiary
,
A.
,
Kazeminezhad
,
M. H.
,
Etemad-Shahidi
,
A.
,
Bass
,
H. M.
, and
Cheng
,
L.
,
2011
, “
Euler-Euler Two-Phase Flow Simulation of Tunnel Erosion Beneath Marine Pipelines
,”
Appl. Ocean. Res.
,
33
, pp.
137
146
.10.1016/j.apor.2011.01.001
16.
Yeganeh
,
A.
,
Gotoh
,
H.
, and
Sakai
,
T.
,
2000
, “
Applicability of Euler-Lagrange Coupling Multi-Phase Flow to Bed-Load Transport Under High Bottom Shear
,”
J Hydraul. Res.
,
38
, pp.
389
398
.10.1080/00221680009498320
17.
Calantoni
,
J.
,
Puleo
,
J. A.
, and
Todd Holland
,
K.
,
2006
, “
Simulation of Sediment Motion Using a Discrete Particle Model in Inner Surf and Swash Zones
,”
Cont. Shelf Res.
,
26
, pp.
610
621
.10.1016/j.csr.2005.11.013
18.
Yeganeh-Bakhtiary
,
A.
,
Shabani
,
M.
,
Gotoh
,
H.
, and
Wang
,
S. M.
,
2009
, “
A Three-Dimensional Distinct Element Model for Bed-Load Transport
,”
J. Hydraul. Res.
,
47
(
2
), pp.
203
212
.10.3826/jhr.2009.3168
19.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
20.
Snider
,
D. M.
,
O'Rourke
,
P. J.
, and
Andrews
,
M. J.
,
1998
, “
Sediment Flow in Inclined Vessels Calculated Using a Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
24
, pp.
1359
1382
.10.1016/S0301-9322(98)00030-5
21.
Rodi
,
W.
,
1980
, “
Turbulence Models and Their Application in Hydraulics, a State of the Art Review
,” International Association for Hydraulic Research, Delft, The Netherlands, IAHR Publication No. 78.
22.
Liang
,
D.
, and
Cheng
,
L.
,
2004
, “
Numerical Model for Wave-Induced Scour Below a Submarine Pipeline
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
131
(
5
), pp.
193
202
.10.1061/(ASCE)0733-950X(2005)131:5(193)
23.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
1991
, “
Onset of Scour Below a Pipeline Exposed to Waves
,”
Int. J. Offshore Polar Eng.
,
13
, pp.
189
194
.
24.
Price
,
S. J.
,
Summer
,
D.
,
Smith
,
J. G.
,
Leong
,
K.
, and
Paidoussis
,
M. P.
,
2002
, “
Flow Visualization Around a Circular Cylinder Near to a Plane Wall
,”
J. Fluids Struct.
,
16
, pp.
175
191
.10.1006/jfls.2001.0413
25.
Lin
,
W. J.
,
Lin
,
C.
,
Hsieh
,
S. C.
, and
Dey
,
S.
,
2009
, “
Flow Characteristics Around a Circular Cylinder Placed Horizontally Above a Plane Boundary
,”
J. Eng. Mech.
,
135
, pp.
697
716
.10.1061/(ASCE)0733-9399(2009)135:7(697)
26.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assembles
,”
Geotechnique
,
29
(
1
), pp.
511
523
.10.1680/geot.1979.29.1.47
27.
Shields
,
A. V.
,
1936
,
Anwendung der Ahnlichkeits Mechanik und der Turbulenz- forschung auf die Geschiebe Bewegung
,
Mitteilungen Preuss, Versuchan-stalt fur Wasserbau and Schiffbau
,
Berlin
, p.
26
.
28.
Gotoh
,
H.
, and
Sakai
,
T.
,
1997
, “
Numerical Simulation of Sheet Flow as Granular Materials
,”
J. Waterway, Port, Coastal, Ocean Eng.
,
123
(
6
), pp.
329
336
.10.1061/(ASCE)0733-950X(1997)123:6(329)
You do not currently have access to this content.