The offshore industry is in constant evolution due to the need to reach increasing water depths for new oil fields exploitation. In this scenario, not only are new types of platforms being designed but also new types of risers, including new flexible pipes and umbilical cable configurations. The greatest difficulty to generate a new concept for a riser is to determine if it is viable or not. Flexible pipes and umbilical cables are complicated to model, due to the interactions between their layers and the large number of possible arrangements. To predict the mechanical behavior of flexible pipes and umbilical cables, adequate models are necessary. One can rely on finite element models (FEM), which show a great difficulty in mesh generation and convergence (especially due to the contact pairs). One can also rely on analytical models, which have many limitations due to simplifications (even though they are necessary). Another possible approach is to define macro-elements, which represent a component, instead of classical finite elements (such as tetrahedric ones). Related to that approach, this paper presents a tubular element to model a cylinder with orthotropic material properties. In the model, the displacement and the loads are described by means of Fourier series, making it possible to treat a broad class of loads. The formulation is presented in detail, giving special attention to surface loading modeling. The results obtained in case studies are compared to those of a classical finite element modeling tool with a good agreement.

References

References
1.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover
,
New York
.
2.
Owen
,
D. G.
,
Reuben
,
R. L.
,
Chen
,
Z.
, and
Feld
G.
,
1992
, “
Some Internal Mechanical Aspects of Flexible Pipes, Cables and Umbilicals for Marine Applications
,”
Mar. Struct.
,
5
, pp.
387
398
.10.1016/0951-8339(92)90010-M
3.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Flexural Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
, pp.
229
249
.10.1016/0951-8339(92)90030-S
4.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torcional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
, pp.
205
227
.10.1016/0951-8339(92)90029-O
5.
Tan
,
Z.
, and
Witz
,
J. A.
,
1993
, “
On the Flexural-Torsional Behavior of a Straight Elastic Beam Subject to Terminal Moments
,”
ASME J. Appl. Mech.
,
60
, pp.
498
505
.10.1115/1.2900821
6.
Witz
,
J. A.
, and
Tan
,
Z.
,
1995
, “
Rotary Bending of Marine Cables and Umbilicals
,”
Eng. Struct.
,
17
(
4
), pp.
267
275
.10.1016/0141-0296(95)00025-3
7.
Witz
,
J. A.
,
1996
, “
A Case Study in the Cross-Section Analysis of Flexible Risers
,”
Mar. Struct.
,
9
, pp.
885
904
.10.1016/0951-8339(95)00035-6
8.
Féret
,
J.
,
Leroy
,
J.-M.
, and
Estrier
,
P.
,
1995
, “
Calculation of Stresses and Slips in Flexible Armour Layers With Layers Interaction
,”
Proceedings of the International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
, Vol.
5
,
Pipeline Technology
.
9.
Out
,
J. M. M.
, and
Von Morgen
,
B. J.
,
1997
, “
Slippage of Helical Reinforcing on a Bent Cylinder
,”
Eng. Struct.
,
19
, pp.
507
515
.10.1016/S0141-0296(96)00112-5
10.
Leroy
,
J.-M.
, and
Estrier
,
P.
,
2001
, “
Calculation of Stresses and Slips in Helical Layers of Dynamically Bent Flexible Pipes
,”
Rev. Inst. Fr. Pet.
,
56
(
6
), pp.
545
554
.10.2516/ogst:2001044
11.
Ramos
,
R.
, Jr
.,
2001
, “
Modelos analíticos no estudo do comportamento estrutural de tubos flexíveis e cabos umbilicais
,” Ph.D. thesis, University of São Paulo,
São Paulo
.
12.
Ramos
,
R.
, Jr.
, and
Pesce
,
C. P.
,
2004
, “
A Consistent Analytical Model to Predict the Structural Behavior of Flexible Risers Subjected to Combined Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
, pp.
141
146
.10.1115/1.1710869
13.
Custódio
,
A. B.
, and
Vaz
,
M. A.
,
2002
, “
A Nonlinear Formulation for the Axisymmetric Response of Umbilical Cables and Flexible Pipes
,”
Appl. Ocean Res.
,
24
, pp.
21
29
.10.1016/S0141-1187(02)00007-X
14.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2008
, “
A Finite Element Analysis for Unbonded Flexible Risers Under Torsion
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
, p.
041301
.10.1115/1.2948956
15.
Knapp
,
R. H.
,
1979
, “
Derivation of a New Stiffness Matrix for Helically Armoured Cables Considering Tension and Torsion
,”
Int. J. Numer. Methods Eng.
,
14
, pp.
515
529
.10.1002/nme.1620140405
16.
Knapp
,
R. H.
,
Le
,
T. T.
, and
Cruickshank
,
M. J.
,
1991
, “
Design Methodology for Undersea Umbilical Cables
,”
Proceedings of the OCEANS Conference, Ocean Technologies and Opportunities in the Pacific for the 90s
, pp.
1319
1327
.
17.
Le
,
T. T.
, and
Knapp
,
R. H.
,
1994
, “
A Finite Element Model for Cables With Nonsymmetrical Geometry and Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
116
, pp.
14
20
.10.1115/1.2920121
18.
Saevik
,
S.
,
1993
, “
A Finite Element Model for Predicting Stresses and Slip in Flexible Pipe Armouring Tendons
,”
Comput. Struct.
,
46
, pp.
219
230
.10.1016/0045-7949(93)90187-I
19.
Saevik
,
S.
, and
Bruaseth
,
S.
,
2005
, “
Theoretical and Experimental Studies of the Axisymmetric Behaviour of Complex Umbilical Cross-Sections
,”
Appl. Ocean Res.
,
27
, pp.
97
106
.10.1016/j.apor.2005.11.001
20.
Harte
,
A. M.
, and
Mcnamara
,
J. F.
,
1993
, “
Modeling Procedures for the Stress Analysis of Flexible Pipe Cross Sections
,”
ASME J. Offshore Mech. Arct. Eng.
,
115
, pp.
46
51
.10.1115/1.2920088
21.
Mciver
,
D. B.
,
1995
, “
A Method of Modelling the Detailed Component and Overall Structural Behaviour of Flexible Pipe Sections
,”
Eng. Struct.
,
17
, pp.
254
266
.10.1016/0141-0296(95)00024-2
22.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
4rd ed.
,
Wiley
,
New York
, p.
719
.
You do not currently have access to this content.