The VIVACE converter was introduced at OMAE2006 as a single, smooth, circular-cylinder module. The hydrodynamics of VIVACE is being improved continuously to achieve higher density in harnessed hydrokinetic power. Intercylinder spacing and passive turbulence control (PTC) through selectively located roughness are effective tools in enhancement of flow induced motions (FIMs) under high damping for power harnessing. Single cylinders harness energy at high density even in 1 knot currents. For downstream cylinders, questions were raised on energy availability and sustainability of high-amplitude FIM. Through PTC and intercylinder spacing, strongly synergetic FIMs of 2/3/4 cylinders are achieved. Two-cylinder smooth/PTC, and three/four-cylinder PTC systems are tested experimentally. Using the “PTC-to-FIM” map developed in previous work at the Marine Renewable Energy Laboratory (MRELab), PTC is applied and cylinder response is measured for inflow center-to-center distance 2D-5D (D = diameter), transverse center-to-center distance 0.5–1.5 D, Re ε [28,000–120,000], m* ε [1.677–1.690], U ε [0.36–1.45 m/s], aspect ratio l/D = 10.29, and m*ζ ε [0.0283–0.0346]. All experiments are conducted in the low turbulence free surface water (LTFSW) channel of MRELab. Amplitude spectra and broad field-of-view (FOV) visualization help reveal complex flow structures and cylinder interference undergoing VIV, interference/ proximity/wake/soft/hard galloping. FIM amplitudes of 2.2–2.8D are achieved for all cylinders in steady flow for all parameter ranges tested.

References

References
1.
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
,
2005
, ”
Determination of Flow Configurations and Fluid Forces Acting on Two Staggered Circular Cylinders of Equal Diameter in Cross-Flow
,”
J. Fluids Struct.
,
21
,
pp.
363
394
.10.1016/j.jfluidstructs.2005.07.009
2.
Assi
,
G. R. S.
,
Meneghini
,
J. R.
,
Aranha
,
J. A. P.
,
Bearman
,
P. W.
, and
Casaprima
,
E.
,
2006
, “
Experimental Investigation of Flow-Induced Vibration Interference Between Two Circular Cylinders
,”
J. Fluids Struct.
,
22
,
pp.
819
827
.10.1016/j.jfluidstructs.2006.04.013
3.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem
,”
Bull. JSME
,
24
(
188
),
pp.
323
331
.10.1299/jsme1958.24.323
4.
King
,
R.
, and
Johns
,
D. J.
,
1976
, “
Wake Interaction Experiments With Two Flexible Cylinders in Flowing Water
,”
J. Sound Vib.
,
45
,
pp.
259
283
.10.1016/0022-460X(76)90601-5
5.
Okajima
,
A.
,
1979
, “
Flow Around Two Tandem Circular Cylinders at Very High Reynolds Numbers
,”
Bull. JSME
,
22
,
pp.
504
511
.10.1299/jsme1958.22.504
6.
Okajima
,
A.
,
Sugitani
,
K.
, and
Mizota
,
T.
,
1986
, “
Flow Around a Circular Cylinder Immersed in a Wake of an Identical Cylinder
,”
Trans. JSME Ser. B
,
52
(
474
),
pp.
524
531
.10.1299/kikaib.52.524
7.
Sumner
,
D.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
2000
, “
Flow-Pattern Identification for Two Staggered Circular Cylinders in Cross-Flow
,”
J. Fluid Mech.
,
411
,
pp.
263
303
.10.1017/S0022112099008137
8.
Zdravkovich
,
M. M.
,
1977
, “
Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,”
ASME J. Fluids Eng.
,
99
,
pp.
618
633
.10.1115/1.3448871
9.
Zdravkovich
,
M. M.
,
1985
, “
Flow Induced Oscillations of Two Interfering Circular Cylinders
,”
J. Sound Vib.
,
101
,
pp.
511
521
.10.1016/S0022-460X(85)80068-7
10.
Zdravkovich
,
M. M.
,
1987
, “
The Effects of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
,
pp.
239
261
.10.1016/S0889-9746(87)90355-0
11.
Igarashi
,
T.
,
1986
, “
Characteristics of the Flow Around Four Circular Cylinders Arranged in Line
,”
Bull. JSME
,
29
,
pp.
751
757
.10.1299/jsme1958.29.751
12.
Igarashi
,
T.
,
1993
, “
Aerodynamic Forces Acting on Three Circular Cylinders Having Different Diameters Closely Arranged in Line
,”
J. Wind Eng. Ind. Aerodyn.
,
49
,
pp.
369
378
.10.1016/0167-6105(93)90031-I
13.
Igarashi
,
T.
, and
Suzuki
,
K.
,
1984
, “
Characteristics of the Flow Around Three Circular Cylinders
,”
Bull. JSME
,
27
,
pp.
2397
2404
.10.1299/jsme1958.27.2397
14.
Werle
,
H.
,
1972
, “
Flow Past Tube Banks
,”
Revue Francais de Mecanique
,
41
,
pp.
7
19
(in French).
15.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
,10.1115/1.2979796
16.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.10.1115/1.2957913
17.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2009
, “
Fluid Motion Energy Converter
,” U.S. Patent No. 7,493,759.
18.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2011
, “
Enhancement of Vortex Induced Forces and Motion Through Surface Roughness Control
,” U.S. Patent No. 8,047,232.
19.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
May
25
,
2007
, “
Reduction/Suppression of Vortex Induced Forces and Motion Through Surface Roughness Control
,” U.S. Provisional Patent Application No. US2009/0114002 A1
(UofM#3757)
.
20.
Park
,
H. R.
,
Bernitsas
,
M. M.
, and
Kumar
,
R. A.
,
2012
, “
Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000<Re<120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(4)
, p.
041801
. 10.1115/1.4006235
21.
Chang
,
C. C.
,
Kumar
,
R. A.
,
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 · 104≤Re≤1.2 · 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.10.1016/j.oceaneng.2011.07.013
22.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
,
pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
23.
Chang
,
C. C.
, and
Bernitsas
,
M. M.
,
2011
, “
Hydrokinetic Energy Harnessing Using the VIVACE Converter With Passive Turbulence Control
,” Proceedings of the 30th
OMAE
2011 Conference,
Rotterdam, The Netherlands
,
June
19–24
, Paper No. OMAE2011-50290, pp.
899
908
.10.1115/OMAE2011-50290
24.
Gowda
,
B. H. L.
, and
Deshkulkarni
,
K. P.
,
1988
, “
Interference Effects on the Flow-Induced Vibrations of a Circular Cylinder in Side-By-Side and Staggered Arrangement
,”
J. Sound Vib.
,
122
,
pp.
465
478
.10.1016/S0022-460X(88)80095-6
25.
Gowda
,
B. H. L.
, and
Prabhu
,
D. R.
,
1987
, “
Interference Effects on the Flow-Induced Vibrations of a Circular Cylinder
,”
J. Sound Vib.
,
112
,
pp.
487
502
.10.1016/S0022-460X(87)80113-X
26.
Gowda
,
B. H. L.
, and
Sreedharan
,
V.
,
1994
, “
Flow-Induced Oscillations of a Circular Cylinder Due to Interference Effects
,”
J. Sound Vib.
,
176
,
pp.
497
514
.10.1006/jsvi.1994.1392
27.
Wu
,
W.
,
Bernitsas
,
M. M.
,
Maki
,
K. J.
,
2011
, “
RANS Simulation vs. Experiments of Flow Induced Motion of Circular Cylinder With Passive Turbulence Control at 35,000<Re<130,000
,” Proceedings of the 30th
OMAE
2011 Conference,
Rotterdam, The Netherlands
,
June
19–24
, Paper No. OMAE2011-50311, pp.
733
744
.10.1115/OMAE2011-50311
28.
Walker
,
D. T.
,
Lyzenga
,
D. R.
,
Ericson
,
E. A.
, and
Lund
,
D. E.
,
1996
, “
Radar Backscatter and Surface Roughness Measurements for Stationary Breaking Waves
,”
Proc. R. Soc., Math. Physic. Eng. Sci.
,
452
(
1952
),
pp.
1953
1984
.10.1098/rspa.1996.0104
29.
Lee
,
J. H.
, and
Bernitsas
,
M. M.
,
2011
, “
High-Damping, High-Reynolds VIV Tests for Energy Harnessing Using the VIVACE Converter
,”
Ocean Eng.
,
38
(
16
), pp.
1697
1712
.10.1016/j.oceaneng.2011.06.007
30.
Lee
,
J. H.
,
Xiros
,
N.
, and
Bernitsas
,
M. M.
,
2011
, “
Virtual Damper-Spring System for VIV Experiments and Hydrokinetic Energy Conversion
,”
Ocean Eng.
,
38
(
5–6
), pp.
732
747
.10.1016/j.oceaneng.2010.12.014
31.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders
,
Vol.
1
,
E.
Achenbach
, ed.,
Oxford University Press
,
Oxford, UK
.
32.
Bishop
,
R. E. D.
, and
Hassan
,
A. Y.
,
1964
, “
The Lift and Drag Forces on a Circular Cylinder in a Flowing Fluid
,”
Proc. R. Soc. London, Ser. A
,
277
,
pp.
32
50
.10.1098/rspa.1964.0004
33.
Kumar
,
R. A.
, and
Gowda
,
B. H. L.
,
2006
, “
Flow-Induced Vibration of a Square Cylinder Without and With Interference
,”
J. Fluids Struct.
,
22
,
pp.
345
369
.10.1016/j.jfluidstructs.2005.11.006
34.
Ruscheweyh
,
H. P.
,
1983
, “
Aeroelastic Interference Effects Between Slender Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
14
,
pp.
129
140
.10.1016/0167-6105(83)90017-X
35.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Wake-Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
,
pp.
383
415
.10.1017/S0022112084001920
36.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Proximity-Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
,
pp.
417
449
.10.1017/S0022112084001932
37.
Orth
,
U.
,
1993
, “
Unsteady Boundary-Layer Transition in Flow Periodically Disturbed by Wakes
,”
ASME J. Turbomach.
,
115
,
pp.
707
713
.10.1115/1.2929306
You do not currently have access to this content.