This paper presents a parallel implementation and validation of an accurate and efficient three-dimensional computational model (3D numerical wave tank), based on fully nonlinear potential flow (FNPF) theory, and its extension to incorporate the motion of a laboratory snake piston wavemaker, as well as an absorbing beach, to simulate experiments in a large-scale 3D wave basin. This work is part of a long-term effort to develop a “virtual” computational wave basin to facilitate and complement large-scale physical wave-basin experiments. The code is based on a higher-order boundary-element method combined with a fast multipole algorithm (FMA). Particular efforts were devoted to making the code efficient for large-scale simulations using high-performance computing platforms. The numerical simulation capability can be tailored to serve as an optimization tool at the planning and detailed design stages of large-scale experiments at a specific basin by duplicating its exact physical and algorithmic features. To date, waves that can be generated in the numerical wave tank (NWT) include solitary, cnoidal, and airy waves. In this paper we detail the wave-basin model, mathematical formulation, wave generation, and analyze the performance of the parallelized FNPF-BEM-FMA code as a function of numerical parameters. Experimental or analytical comparisons with NWT results are provided for several cases to assess the accuracy and applicability of the numerical model to practical engineering problems.

References

References
1.
Banerjee
,
P. K.
, and
Butterfield
,
R.
,
1981
,
Boundary Element Methods in Engineering Science
,
McGraw-Hill
,
London
.
2.
Yeung
,
R. W.
,
1982
, “
Numerical Methods in Free-Surface Flow
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
395
442
.10.1146/annurev.fl.14.010182.002143
3.
Brebbia
,
C. A.
,
Telles
,
J. C. F.
, and
Wrobel
,
L. C.
,
1984
,
Boundary Element Techniques: Theory and Applications in Engineering
,
Springer
,
Berlin
.
4.
Grosenbaugh
,
M. A.
, and
Yeung
,
R. W.
,
1989
, “
Nonlinear Free-Surface Flow at a Two-Dimensional Bow
,”
J. Fluid Mech.
,
209
, pp.
57
75
.10.1017/S0022112089003034
5.
Kanwal
,
R. P.
,
1997
,
Linear Integral Equations—Theory and Technique
,
Birkhauser
,
Boston
.
6.
Hsiao
,
G. C.
, and
Wendland
,
W. L.
,
2008
,
Boundary Integral Equations
,
Springer
,
Berlin
.
7.
Chen
,
G.
, and
Zhou
,
J.
,
2010
,
Boundary Element Methods With Applications to Nonlinear Problems
,
World Scientific, Singapore
.
8.
Nishimura
,
N.
,
2002
, “
Fast Multipole Accelerated Boundary Integral Equation Methods
,”
Appl. Mech. Rev.
,
55
(
4
), pp.
299
324
.10.1115/1.1482087
9.
Margonari
,
M.
, and
Bonnet
,
M.
,
2005
, “
Fast Multipole Method Applied to Elastostatic BEM-FEM Coupling
,”
Comput. Struct.
,
83
, pp.
700
717
.10.1016/j.compstruc.2004.09.007
10.
Chaillat
,
S.
,
Bonnet
,
M.
, and
Semblat
,
J.-F.
,
2008
, “
A Multi-Level Fast Multipole BEM for 3-D Elastodynamics in the Frequency Domain
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
49–50
), pp.
4233
4249
.10.1016/j.cma.2008.04.024
11.
Liu
,
Y.
,
2009
,
Fast Multipole Boundary Element Method: Theory and Applications in Engineering
,
Cambridge University Press
,
Cambridge, NY
.
12.
Fochesato
,
C.
, and
Dias
,
F.
,
2006
, “
A Fast Method for Nonlinear Three-Dimensional Free-Surface Waves
,”
Proc. R. Soc. London Ser. A
,
462
, pp.
2715
2735
.10.1098/rspa.2006.1706
13.
Phillips
,
J. R.
, and
White
,
J. K.
,
1997
, “
A Pre-Corrected-FFT Method for Electrostatic Analysis of Complicated 3D Structures
,”
IEEE Trans. Comput. Aided Design Integrated Circuits Syst.
,
16
, pp.
1059
1072
.10.1109/43.662670
14.
Yan
,
H.-M.
, and
Liu
,
Y.-M.
,
2011
, “
An Efficient High-Order Boundary Element Method for Nonlinear Wave-Wave and Wave-Body Interactions
,”
J. Comput. Phys.
,
230
, pp.
402
424
.10.1016/j.jcp.2010.09.029
15.
Yan
,
H.-M.
,
2010
, “
Computations of Fully Nonlinear Three-Dimension Wave-Body Interactions
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
16.
Dommermuth
,
D. G.
,
Yue
,
D. K. P.
,
Lin
,
W. M.
, and
Rapp
,
R. J.
,
1988
, “
Deep-Water Plunging Breakers: A Comparison Between Potential Theory and Experiments
,”
J. Fluid Mech.
,
189
, pp.
423
442
.10.1017/S0022112088001089
17.
Grilli
,
S.
,
Subramanya
,
R.
,
Svendsen
,
I. A.
, and
Veeramony
,
J.
,
1994
, “
Shoaling of Solitary Waves on Plane Beaches
,”
J. Waterway, Port, Coastal Ocean Eng.
,
120
(
6
), pp.
609
628
.10.1061/(ASCE)0733-950X(1994)120:6(609)
18.
Dean
,
R. G.
, and
Dalrymple
,
R. A.
,
2000
,
Water Wave Mechanics for Engineers and Scientists
,
World Scientific
,
Singapore
.
19.
Dold
,
J. W.
, and
Peregrine
,
D. H.
,
1986
, “
An Efficient Boundary-Integral Method for Steep Unsteady Water Waves
,”
Numerical Methods for Fluid Dynamics II
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Clarendon
,
Oxford
.
20.
Dold
,
J. W.
,
1992
, “
An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity Waves
,”
J. Comput. Phys.
,
103
, pp.
90
115
.10.1016/0021-9991(92)90327-U
21.
Dold
,
J. W.
, and
Peregrine
,
D. H.
,
1984
, “
Steep Unsteady Water Waves: An Efficient Computational Scheme
,”
Proceedings of 19th International Conference on Coastal Engineering
,
Houston
, pp.
955
967
.
22.
Lin
,
W. M.
,
1984
, “
Nonlinear Motion of the Free Surface Near a Moving Body
,” Ph.D. thesis,
Department of Ocean Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
23.
Longuet-Higgins
,
M. S.
, and
Cokelet
,
E. D.
,
1976
, “
The Deformation of Steep Surface Waves on Water. I. A Numerical Method of Computation
,”
Proc. R. Soc. London Ser. A
,
350
, pp.
1
26
.10.1098/rspa.1976.0092
24.
Grilli
,
S. T.
,
Skourup
,
J.
, and
Svendsen
,
I. A.
,
1989
, “
An Efficient Boundary Element Method for Nonlinear Water Waves
,”
Eng. Anal. Boundary Elements
,
6
(
2
), pp.
97
107
.10.1016/0955-7997(89)90005-2
25.
Grilli
,
S. T.
, and
Subramanya
,
R.
,
1996
, “
Numerical Modeling of Wave Breaking Induced by Fixed or Moving Boundaries
,”
Comput. Mech.
,
17
, pp.
374
391
.10.1007/BF00363981
26.
Romate
,
J. E.
,
1989
, “
The Numerical Simulation of Nonlinear Gravity Waves in Three Dimensions Using a Higher Order Panel Method
,” Ph.D. thesis,
University of Twente
,
The Netherlands
.
27.
Broeze
,
J.
,
1993
, “
Numerical Modelling of Nonlinear Free Surface Waves With a 3D Panel Method
,” Ph.D. thesis,
University of Twente
,
The Netherlands
.
28.
van Daalen
,
E. F. G.
,
1993
, “
Numerical and Theoretical Studies of Water Waves and Floating Bodies
,” Ph.D. thesis,
University of Twente
,
The Netherlands
.
29.
Berkvens
,
P. J. F.
,
1998
, “
Floating Bodies Interacting With Water Waves—Development of a Time-Domain Panel Method
,” Ph.D. thesis,
University of Twente
,
The Netherlands
.
30.
Liu
,
P. L. F.
,
Hsu
,
H. W.
, and
Lean
,
M. H.
,
1992
, “
Applications of Boundary Integral Equation Methods for Two-Dimensional Non-Linear Water Wave Problems
,”
Int. J. Numer. Methods Fluids
,
15
, pp.
1119
1141
.10.1002/fld.1650150912
31.
Cooker
,
M. J.
,
1990
, “
A Boundary-Integral Method for Water Wave Motion Over Irregular Beds
,”
Eng. Anal. Boundary Elements
,
7
(
4
), pp.
205
213
.10.1016/0955-7997(90)90006-U
32.
Grilli
,
S. T.
,
Guyenne
,
P.
, and
Dias
,
F.
,
2001
, “
A Fully Nonlinear Model for Three-Dimensional Overturning Waves Over Arbitrary Bottom
,”
Int. J. Numer. Methods Fluids
,
35
(
7
), pp.
829
867
.10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2
33.
Fochesato
,
C.
,
Grilli
,
S. T.
, and
Guyenne
,
P.
,
2005
, “
Note on Non-Orthogonality of Local Curvilinear Coordinates in a Three-Dimensional Boundary Element Method
,”
Int. J. Numer. Methods Fluids
,
48
, pp.
305
324
.10.1002/fld.838
34.
Fochesato
,
C.
,
Grilli
,
S. T.
, and
Dias
,
F.
,
2007
, “
Numerical Modeling of Extreme Rogue Waves Generated by Directional Energy Focusing
,”
Wave Motion
,
44
, pp.
395
416
.10.1016/j.wavemoti.2007.01.003
35.
Grilli
,
S. T.
,
Dias
,
F.
,
Guyenne
,
P.
,
Fochesato
,
C.
, and
Enet
,
F.
,
2010
, “
Progress in Fully Nonlinear Potential Flow Modeling of 3D Extreme Ocean Waves
,”
Advances in Numerical Simulation of Nonlinear Water Wave
(Advances in Coastal and Ocean Engineering),
Q.
Ma
, ed.,
Vol. 11
,
World Scientific
,
Singapore
, pp.
75
128
.
36.
Hughes
,
S. A.
,
1993
,
Physical Models and Laboratory Techniques in Coastal Engineering
,
World Scientific
,
Singapore
.
37.
Svendsen
,
I. A.
, and
Grilli
,
S. T.
,
1990
, “
Nonlinear Waves on Steep Slopes
,”
J. Coastal Res.
,
7
, pp.
185
202
. Available at http://www.jstor.org/stable/25735398
38.
Lakhan
,
C.
,
1982
, “
Calculating Modulus k of Cnoidal Waves
,”
J. Waterway Port Coastal Ocean Eng.
,
108
(
3
), pp.
435
438
.
39.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
40.
Goring
,
D. G.
,
1978
, “
Tsunamis—The Propagation of Long Waves Onto a Shelf
,”
W. M. Keck Laboratory of Hydraulics and Water Resources, Division of Engineering and Applied Science
,
California Institute of Technology
,
Pasadena, CA
, Report No. KH-R-38.
41.
Tanaka
,
M.
,
1986
, “
The Stability of Solitary Waves
,”
Phys. Fluids
,
29
(
3
), pp.
650
655
.10.1063/1.865459
42.
Rankin
,
W. T.
,
1999
, “
Efficient Parallel Implementations of Multipole Based N-Body Algorithms
,” Ph.D. thesis,
Dept. of Electrical Engineering, Duke University, Durham, NC
.
43.
Chapman
,
B.
,
Jost
,
G.
, and
van de Pas
,
R. V.
,
2007
,
Using OpenMP: Portable Shared Memory Parallel Programming
,
MIT Press
,
Cambridge, MA
.
You do not currently have access to this content.