This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests are also described. In these tests, a typical 4 in. flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all results points out that the proposed FE model is effective to estimate the response of flexible pipes to axial compression and; furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.

References

References
1.
Witz
,
J. A.
, and
Tan
,
Z.
, 1992, “
On the Axial-Torsional Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
, pp.
205
227
.
2.
Merino
,
H. E. M.
,
Sousa
,
J. R. M.
,
Magluta
,
C.
, and
Roitman
,
N.
, 2009, “
On the Coupled Extensional-Torsional Response of Flexible Pipes
,”
Proceedings of the ASME 28th OMAE
, 79468, Honolulu, Hawaii.
3.
Merino
,
H. E. M.
,
Sousa
,
J. R. M.
,
Magluta
,
C.
, and
Roitman
,
N.
, 2009, “
Numerical and Experimental Study of a Flexible Pipe under Torsion
,”
Proceedings of the ASME 29th OMAE
, 20902, Shangai, China.
4.
de Sousa
,
J. R. M.
,
Magluta
,
C.
,
Roitman
,
N.
,
Ellwanger
,
G. B.
,
Lima
,
E. C. P.
, and
Papaleo
,
A.
, 2009.
“On the Response of Flexible Risers to Loads Imposed by Hydraulic Collars,”
Appl. Ocean Res.
,
31
, pp.
157
170
.
5.
Troina
,
L. M. B.
,
Mourelle
,
M. M.
,
Brack
,
M.
,
de Sousa
,
J. R. M.
, and
de Siqueira
,
M. Q.
, 2002, “
A Strategy for Flexible Riser Analysis Focused on Compressive Failure Mode
,”
Proceedings of the 14th Deep Offshore Technology
, New Orleans.
6.
Brack
,
M.
,
Troina
,
L. M. B.
, and
de Sousa
,
J. R. M.
, 2005, “
Flexible Riser Resistance against Combined Axial Compression, Bending and Torsion in Ultra-Deep Water Depths
,”
Proceedings of the 24th OMAE
, 67404, Halkidiki, Greece.
7.
Custódio
,
A. B.
,
Lemos
,
C. A. D.
,
Troina
,
L. M. B.
, and
de Almeida
,
M. C.
, 2007, “
Recent Research on the Instability of Flexible Pipe’s Armours
,”
Proceedings of the 17th ISOPE Conference
,
Lisbon, Portugal
.
8.
Bectarte
,
F.
, and
Coutarel
,
A.
, 2004, “
Instability of Tensile Armour Layers of Flexible Pipes Under External Pressure
,”
Proceedings of the 23rd OMAE
, 51352,
Vancouver, Canada
.
9.
American Petroleum Institute (API)
, 2002,
Recommended Practice for Flexible Pipe
,
API RP 17B, 3rd ed, American Petroleum Institute
,
New York
.
10.
Neto
,
E.
,
Maurício
,
J.
, and
Waclawek
,
I.
, 2001, “
Flexible Pipe for Ultra-Deepwater Applications: The Roncador Experience
,”
Proceedings of the 33rd Offshore Technology Conference
, 13207, Houston.
11.
Novitsky
,
A.
, and
Sertã
,
S.
, 2002, “
Flexible Pipe in Brazilian Ultra-Deepwater Fields— a Proven Solution
,”
Proceedings of the 14th Deep Offshore Technology
, New Orleans.
12.
de Sousa
,
J. R. M.
,
Ellwanger
,
G. B.
,
Lima
,
E. C. P.
, and
Troina
,
L. M. B.
, 2004, “
Stability Analysis of the Helical Tendons of Flexible Risers through the Finite Element Method
,”
Proceedings of the XXV Iberian Latin-American Congress on Computational Methods in Engineering (CILAMCE)
,
300
, Recife, Brazil (in Portuguese).
13.
Braga
,
M. J. P.
, and
Kallef
,
P.
, 2004, “
Flexible Pipe Sensitivity to Birdcaging and Armor Wire Lateral Buckling
,”
Proceedings of the 23rd OMAE
, 51090, Vancouver, Canada.
14.
Souza
,
A. P. F.
, 2002,
Flexible Pipe’s Collapse under External Pressure”
, D. Sc. thesis, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. (In Portuguese).
15.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
, 2008, “
A Finite Element Analysis of Unbonded Flexible Risers under Axial Tension
,”
Proceedings of the ASME 27th OMAE
, 57627, Estoril.
16.
Belytschko
,
T.
, and
Neal
,
M. O.
, 1991, “
Contact-Impact by the Pinball Algorithm with Penalty and Lagrangean Methods
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
547
572
.
17.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons
,
Chichester, England
.
18.
Besseling
,
J. F.
, 1958,
“A Theory of Elastic, Plastic and Creep Deformations of an Initially Isotropic Material Showing Anisotropic Strain-Hardening Creep Recovery and Secondary Creep,”
Appl. Mech
.,
25
, pp.
529
536
.
19.
Tabonne
,
S.
, and
Wendling
,
L.
, 2003, “
Multi-Scale Binarization of Images
,”
Pattern Recognition Letters
,
24
(
1–3
), pp.
403
411
.
You do not currently have access to this content.