The objective of this work is to develop and validate a coupled boundary element method-finite element method to simulate the transient fluid-structure interaction response of tidal turbines subject to spatially varying inflow. The focus is on tidal turbines, although the methodology is also applicable for the analysis and design of wind turbines. An overview of the formulation for both the fluid and solid domains, and the fluid-structure interaction algorithms, is presented. The model is validated by comparing the predicted thrust and power measurements, as well as cavitation patterns, with experimental measurements and observations for an 800 mm marine current turbine presented in the work of Bahaj et al. (2007, “Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank,” Renewable Energy, 32, pp. 407–426). Additional numerical results are shown for the same turbine, but scaled up to 20 m in diameter, operating in a tidal boundary layer flow with a water depth of 30 m. The results show that transient cavitation will develop near the blade tip when the blades are near the free surface at highly-loaded off-design conditions, and the blades will undergo excessive deformation because of the high fluid loading and slender blade profile. The results also show that the natural frequencies of the blades are significantly reduced when operating in water, as compared with when operating in air, because of added-mass effects. In addition to demonstrating the need for proper consideration for fluid cavitation and structural response, current design challenges for both wind and tidal turbines are discussed.

1.
Prado
,
R.
, 1995, “
Reformulation of the Momentum Theory Applied to Wind Turbines
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
58
, pp.
277
292
.
2.
Glauert
,
H.
, 1943, “
Wind Tunnel Interference in Airplane Propellers
,”
Aerodynamic Theory
, Vol.
4
,
Dover
,
New York
, pp.
296
301
.
3.
Miller
,
G.
,
Corren
,
D.
,
Armstrong
,
P.
, and
Franceschi
,
J.
, 1987, “
A Study of an Axial-Flow Turbine for Kinetic Hydro Power Generation
,”
Energy
0360-5442,
12
(
2
), pp.
155
162
.
4.
Imamura
,
H.
, 2001, “
Aerodynamics of Wind Turbines
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
89
, pp.
249
252
.
5.
Barltrop
,
N.
,
Varyani
,
K.
,
Grant
,
A.
,
Clelland
,
D.
, and
Pham
,
X.
, 2006, “
Wave-Current Interactions in Marine Current Turbines
,”
Proc. MECH Part M
,
220
, pp.
195
203
. 1475-0902
6.
Barltrop
,
N.
,
Varyani
,
K.
,
Grant
,
A.
,
Clelland
,
D.
, and
Pham
,
X.
, 2007, “
Investigation Into Wave-Current Interactions in Marine Current Turbines
,”
Proc. MECH Part J. Power Energy
,
221
, pp.
233
242
. 0957-6509
7.
Bahaj
,
A.
,
Batten
,
W.
, and
McCann
,
G.
, 2007, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
0960-1481,
32
, pp.
2479
2490
.
8.
Batten
,
W.
,
Bahaj
,
A.
,
Molland
,
A.
,
Chaplin
,
J.
, and
Group
,
S. E. R.
, 2007, “
Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines
,”
Ocean Eng.
0029-8018,
34
, pp.
1013
1020
.
9.
Maheri
,
A.
,
Noroozi
,
S.
, and
Vinney
,
J.
, 2007, “
Combined Analytical/FEA-Based Coupled Aero Structure Simulation of a Wind Turbine With Bend-Twist Adaptive Blades
,”
Renewable Energy
0960-1481,
32
, pp.
916
930
.
10.
Maekawa
,
H.
, 1984, “
Application of the Vortex Theory to High-Speed Horizontal-Axis Wind Turbines
,”
Bull. JSME
0021-3764,
27
(
229
), pp.
1460
1466
.
11.
Nicholls-Lee
,
R.
, and
Turnock
,
S.
, 2007, “
Enhancing Performance of a Horizontal Axis Tidal Turbine Using Adaptive Blades
,”
Oceans 2007-Europe
.
12.
Drela
,
M.
, and
Youngren
,
H.
, 2001, XFOIL 6.94 User Guide.
13.
Kinnas
,
S.
, and
Fine
,
N.
, 1989, “
Theoretical Prediction of the Midchord and Face Unsteady Propeller Sheet Cavitation
,”
Proceedings of the Fifth International Conference on Numerical Ship Hydrodynamics
, Hiroshima, Japan.
14.
Kerwin
,
J.
, and
Lee
,
C. -S.
, 1978, “
Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting-Surface Theory
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
86
, pp.
218
253
.
15.
Lee
,
C. -S.
, 1979, “
Prediction of Steady and Unsteady Performance of Marine Propellers With or Without Cavitation by Numerical Lifting Surface Theory
,” Ph.D. thesis, Department of Ocean Engineering, MIT, Cambridge, MA.
16.
Breslin
,
J.
,
Van Houten
,
R.
,
Kerwin
,
J.
, and
Johnsson
,
C. -A.
, 1982, “
Theoretical and Experimental Propeller-Induced Hull Pressures Arising From Intermittent Blade Cavitation, Loading, and Thickness
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
90
, pp.
111
151
.
17.
Kerwin
,
J.
,
Kinnas
,
S.
,
Wilson
,
M.
, and
McHugh
,
J.
, 1986, “
Experimental and Analytical Techniques for the Study of Unsteady Propeller Sheet Cavitation
,”
Proceedings of the 16th Symposium on Naval Hydrodynamics
, Berkeley, CA, pp.
387
414
.
18.
Kinnas
,
S.
, 1985, “
Non-Linear Corrections to the Linear Theory for the Prediction of the Cavitating Flow Around Hydrofoils
,” Department of Ocean Engineering, Massachusetts Institute of Technology, Technical Report No. 85-10.
19.
Kinnas
,
S.
, 1991, “
Leading-Edge Corrections to the Linear Theory of Partially Cavitating Hydrofoils
,”
J. Ship Res.
0022-4502,
35
(
1
), pp.
15
27
.
20.
Kinnas
,
S.
, 1992, “
A General Theory for the Coupling Between Thickness and Loading for Wings and Propellers
,”
J. Ship Res.
0022-4502,
36
(
1
), pp.
59
68
.
21.
Kinnas
,
S.
, and
Pyo
,
S.
, 1999, “
Cavitating Propeller Analysis Including the Effects of Wake Alignment
,”
J. Ship Res.
0022-4502,
43
(
1
), pp.
38
47
.
22.
Pellone
,
C.
, and
Rowe
,
A.
, 1981, “
Supercavitating Hydrofoils in Non-Linear Theory
,”
Third International Conference on Numerical Ship Hydrodynamics
, Basin d’essais des Carènes, Paris, France.
23.
Kinnas
,
S.
, and
Fine
,
N.
, 1993, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
0022-1120,
254
, pp.
151
181
.
24.
Kinnas
,
S.
, and
Fine
,
N.
, 1990, “
Non-Linear Analysis of the Flow Around Partially or Super-Cavitating Hydrofoils by a Potential Based Panel Method
,”
Proceedings of the IABEM-90 Symposium of the International Association for Boundary Element Methods
, Rome, Italy, pp.
289
300
.
25.
Yeung
,
R.
, 1982, “
Numerical Methods in Free-Surface Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
395
442
.
26.
Kerwin
,
J.
,
Kinnas
,
S.
,
Lee
,
J. -T.
, and
Shih
,
W. -Z.
, 1987, “
A Surface Panel Method for the Hydrodynamic Analysis of Ducted Propellers
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
95
, pp.
93
122
.
27.
Young
,
Y.
, and
Kinnas
,
S.
, 2001, “
A BEM for the Prediction of Unsteady Midchord Face and/or Back Propeller Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
311
319
.
28.
Young
,
Y.
, and
Kinnas
,
S.
, 2003, “
Analysis of Supercavitating and Surface-Piercing Propeller Flows Via BEM
,”
Comput. Mech.
0178-7675,
32
, pp.
269
280
.
29.
Young
,
Y.
, 2007, “
Time-Dependent Hydroelastic Analysis of Cavitating Propellers
,”
J. Fluids Struct.
0889-9746,
23
, pp.
269
295
.
30.
Young
,
Y.
, 2008, “
Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
0889-9746,
24
(
6
), pp.
799
818
.
31.
Yeung
,
R.
, 2002, “
Fluid Dynamics of Finned Bodies—From VIV to FPSO
,”
12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, Vol.
2
, pp.
1
11
.
32.
Yeung
,
R.
,
Seah
,
R.
, and
Imamura
,
J.
, 2008, “
Separated Flow About a Slender Body in Forward and Lateral Motion
,”
27th International Conference on Ocean, Offshore and Arctic Engineering
, Estoril, Portugal.
33.
Hansen
,
M.
,
Sorensen
,
J.
,
Voutsinas
,
S.
,
Sorensen
,
N.
, and
Madsen
,
H.
, 2006, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
0376-0421,
42
, pp.
285
330
.
34.
Kinnas
,
S.
,
Choi
,
J.
,
Lee
,
H.
, and
Young
,
J.
, 2000, “
Numerical Cavitation Tunnel
,”
NCT50, International Conference on Propeller Cavitation
, Newcastle-upon-Tyne, England.
35.
Choi
,
J.
, 2000, “
Vortical Inflow—Propeller Interaction Using Unsteady Three-Dimensional Euler Solver
,” Ph.D. thesis, Department of Civil Engineering, The University of Texas at Austin, Austin, TX.
36.
Hughes
,
T.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
New York
.
37.
Greeley
,
D.
, and
Kerwin
,
J.
, 1982, “
Numerical Methods for Propeller Design and Analysis in Steady Flow
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
90
, pp.
415
453
.
38.
Lee
,
H.
, and
Kinnas
,
S.
, 2005, “
Unsteady Wake Alignment for Propellers in Non-Axisymmetric Flows
,”
J. Ship Res.
0022-4502,
49
(
3
), pp.
176
190
.
39.
Young
,
Y.
, and
Kinnas
,
S.
, 2003, “
Numerical Modeling of Supercavitating Propeller Flows
,”
J. Ship Res.
0022-4502,
47
(
1
), pp.
48
62
.
40.
Brillouin
,
M.
, 1911, “
Les surfaces de glissement de Helmholtz et la resistance des fluides
,”
Ann. Chim. Phys.
0365-1444,
23
, pp.
145
230
.
41.
Villat
,
H.
, 1914, “
Sur la validité des solutions de certain problem d’ hydrodynamique
,”
J. Anal. Math.
0099-698X,
6
(
10
), pp.
231
290
.
42.
Bahaj
,
A.
,
Molland
,
A.
,
Chaplin
,
J.
, and
Batten
,
W.
, 2007, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
0960-1481,
32
, pp.
407
426
.
43.
Young
,
Y.
, and
Liu
,
Z.
, 2007, “
Hydroelastic Tailoring of Composite Naval Propulsors
,”
26th International Conference on Offshore Mechanics and Arctic Engineering
, San Diego, CA.
You do not currently have access to this content.