The Gaussian linear wave model, which has been successfully used in ocean engineering for more than half a century, is well understood, and there exist both exact theory and efficient numerical algorithms for calculation of the statistical distribution of wave characteristics. It is well suited for moderate seastates and deep water conditions. One drawback, however, is its lack of realism under extreme or shallow water conditions, in particular, its symmetry. It produces waves, which are stochastically symmetric, both in the vertical and in the horizontal direction. From that point of view, the Lagrangian wave model, which describes the horizontal and vertical movements of individual water particles, is more realistic. Its stochastic properties are much less known and have not been studied until quite recently. This paper presents a version of the first order stochastic Lagrange model that is able to generate irregular waves with both crest-trough and front-back asymmetries.

1.
St.Denis
,
M.
, and
Pierson
,
W. J.
, 1953, “
On the Motion of Ships in Confused Seas
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
61
, pp.
280
357
.
2.
Longuet-Higgins
,
M. S.
, 1957. “
The Statistical Analysis of a Random Moving Surface
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
249
, pp.
321
387
.
3.
Aberg
,
S.
,
Rychlik
,
I.
, and
Leadbetter
,
M. R.
, 2008, “
Palm Distributions of Wave Characteristics in Encountering Seas
,”
Ann. Appl. Probab.
1050-5164,
18
, pp.
1059
1084
.
4.
Baxevani
,
A.
,
Podgórski
,
K.
, and
Rychlik
,
I.
, 2003, “
Velocities for Moving Random Surfaces
,”
Probab. Eng. Mech.
0266-8920,
18
, pp.
251
271
.
5.
Podgórski
,
K.
,
Rychlik
,
I.
, and
Machado
,
U. E. B.
, 2000, “
Exact Distributions for Apparent Waves in Irregular Seas
,”
Ocean Eng.
0029-8018,
27
, pp.
979
1016
.
6.
Lindgren
,
G.
, and
Broberg
,
K. B.
, 2004, “
Cycle Range Distributions for Gaussian Processes—Exact and Approximative Results
,”
Extremes
,
7
, pp.
69
89
. 1386-1999
7.
Forristall
,
G.
, 1985, “
Irregular Wave Kinematics From a Kinematic Boundary Condition Fit (KBCF)
,”
Appl. Ocean Res.
,
7
, pp.
202
212
. 0141-1187
8.
Donelan
,
M. A.
,
Anctil
,
F.
, and
Doering
,
J. C.
, 1992, “
A Simple Method for Calculating the Velocity Field Beneath Irregular Waves
,”
Coastal Eng.
0378-3839,
16
, pp.
399
424
.
9.
Cieślikiewicz
,
W.
, and
Gudmestad
,
O. T.
, 1993, “
Stochastic Characteristics of Orbital Velocities of Random Water Waves
,”
J. Fluid Mech.
0022-1120,
255
, pp.
275
299
.
10.
Song
,
J. -B.
, and
Wu
,
Y. -H.
, 2000, “
Statistical Distribution of Water-Particle Velocity Below the Surface Layer for Finite Water Depth
,”
Coastal Eng.
0378-3839,
40
, pp.
1
19
.
11.
Gjøsund
,
S. H.
, 2003, “
A Lagrangian Model for Irregular Waves and Wave Kinematics
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
125
, pp.
94
102
.
12.
Socquet-Juglard
,
H.
,
Dysthe
,
K. B.
,
Trulsen
,
K.
,
Fouques
,
S.
,
Liu
,
J.
, and
Krogstad
,
H.
, 2004, “
Spatial Extremes, Shape of Large Waves, and Lagrangian Models
,”
Proceedings Rogue Waves
, Brest, France.
13.
Fouques
,
S.
,
Krogstad
,
H. E.
, and
Myrhaug
,
D.
, 2006, “
A Second Order Lagrangian Model for Irregular Ocean Waves
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
128
, pp.
177
183
.
14.
Lindgren
,
G.
, 2006, “
Slepian Models for the Stochastic Shape of Individual Lagrange Sea Waves
,”
Adv. Appl. Probab.
0001-8678,
38
, pp.
430
450
.
15.
Aberg
,
S.
, 2007, “
Wave Intensities and Slopes in Lagrangian Seas
,”
Adv. Appl. Probab.
0001-8678,
39
, pp.
1020
1035
.
16.
Aberg
,
S.
, and
Lindgren
,
G.
, 2008, “
Height Distribution of Stochastic Lagrange Ocean Waves
,”
Probab. Eng. Mech.
0266-8920,
23
, pp.
359
363
.
17.
Leykin
,
I. A.
,
Donelan
,
M. A.
,
Mellen
,
R. H.
, and
McLaughlin
,
D. J.
, 1995, “
Asymmetry of Wind Waves Studied in a Laboratory Tank
,”
Nonlinear Processes Geophys.
1023-5809,
2
, pp.
280
289
.
18.
Gerstner
,
F. J.
, 2006, “
Theorie der Wellen
,”
Ann. Phys.
0003-3804,
32
, pp.
412
445
.
19.
Miche
,
M.
, 1944, “
Mouvements ondulatoires de la mer on profondeur constante ou décroissante. Forme limit de la houle lors de son déferlement. Application aux digues marines
,”
Ann. Ponts Chaussees
0003-4304,
114
, pp.
25
78
.
20.
Myrhaug
,
D.
, and
Kjeldsen
,
S. P.
, 1984, “
Parametric Modelling of Joint Probability Density Distributions for Steepness and Asymmetry in Deep Water Waves
,”
Appl. Ocean Res.
,
6
, pp.
207
220
. 0141-1187
21.
Niedzwecki
,
J. M.
,
van de Lindt
,
J. W.
, and
Sandt
,
E. W.
, 1998, “
Characterizing Random Wave Surface Elevation Data
,”
Ocean Eng.
0029-8018,
26
, pp.
401
430
.
22.
Elgar
,
S.
, 1987, “
Relationships Involving Third Moments and Bispectra of a Harmonic Process
,”
IEEE Trans. Acoust., Speech, Signal Process
.,
ASSP-35
, pp.
1725
1727
.
23.
WAFO-Group
, 2000, “
WAFO—A Matlab Toolbox for Analysis of Random Waves and Loads—A Tutorial, Mathematical Statistics
,” Lund University, Sweden, http://www.maths.lth.se/matstat/wafohttp://www.maths.lth.se/matstat/wafo.
24.
Taylor
,
P. H.
, and
Williams
,
B. A.
, 2004, “
Wave Statistics for Intermediate Depth Water—NewWaves and Symmetry
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
126
, pp.
54
59
.
25.
Forristall
,
G. Z.
,
Barstow
,
S. S.
,
Krogstad
,
H. E.
,
Prevosto
,
M.
,
Taylor
,
P. H.
, and
Tromans
,
P. S.
, 2002, “
Wave Crest Sensor Intercomparison Study: An Overview of WACSIS
,”
Proceedings First International Conference on Offshore Mechanics and Arctic Engineering
, Paper No. OMAE2002-28535.
26.
Feddersen
,
F.
, and
Veron
,
F.
, 2005, “
Wind Effects on Shoaling Wave Shape
,”
J. Phys. Oceanogr.
1520-0485,
35
, pp.
1223
1228
.
27.
Forristall
,
G. Z.
,
Ward
,
E. G.
,
Cardone
,
V. J.
, and
Borgmann
,
L. E.
, 1978, “
The Directional Spectra and Kinematics of Surface Gravity Waves in Tropical Storm Delia
,”
J. Phys. Oceanogr.
1520-0485,
8
, pp.
888
909
.
28.
Battjes
,
J. A.
, and
van Heteren
,
J.
, 1984, “
Verification of Linear Theory for Particle Velocities in Wind Waves Based on Field Measurements
,”
Appl. Ocean Res.
,
6
, pp.
187
196
. 0141-1187
29.
Cavaleri
,
L.
, and
Zecchetto
,
S.
, 1987, “
Reynold Stresses Under Wind Waves
,”
J. Geophys. Res.
0148-0227,
92
(4), pp.
3894
3904
.
30.
Drennan
,
W. M.
,
Kahma
,
K. K.
, and
Donelan
,
M. A.
, 1992, “
The Velocity Field Beneath Wind-Waves—Observations and Inference
,”
Coastal Eng.
0378-3839,
18
, pp.
111
136
.
31.
Chakrabarti
,
S. K.
, and
Kriebel
,
D.
, 1997, “
Wave Kinematics for Simulated Shallow Water Storm Waves—Analysis and Experiments
,”
Ocean Eng.
0029-8018,
24
, pp.
835
865
.
32.
Zhang
,
X.
, 2003, “
Surface Image Velocimetry for Measuring Short Wind Wave Kinematics
,”
Exp. Fluids
0723-4864,
35
, pp.
653
665
.
33.
Choi
,
H. -J.
, 2005, “
Kinematics Measurements of Regular, Irregular, and Rogue Waves by PIV/LDV
,” Ph.D. thesis, Ocean Engineering, Texas A&M University, College Station.
34.
Smith
,
J. A.
, 2006, “
Observed Variability of Ocean Wave Stokes Drift, and the Eulerian Response to Passing Groups
,”
J. Phys. Oceanogr.
1520-0485,
36
, pp.
1381
1402
.
35.
Stagonas
,
D.
, and
Müller
,
G.
, 2007, “
Wave Field Mapping With Particle Image Velocimetry
,”
Ocean Eng.
0029-8018,
34
, pp.
1781
1785
.
You do not currently have access to this content.