A semianalytical method is developed for the stochastic analysis of a nonlinear moored ocean structure subjected to narrow band random waves. The method is then used to investigate the probability distribution of extreme values of the responses. To verify the accuracy and capability of the method in handling complex nonlinear behavior of the nonlinear moored ocean structure, experimental results are employed to calibrate numerical simulations and the resulting probability distributions obtained from the semianalytical method. A nonlinear-structure nonlinearly damped model is employed to model the moored structure considered and the system coefficients are identified through the reverse multiple-input/single-output technique. An examination of the comparisons indicates that the structural response extreme value probability distributions obtained from the semianalytical predictions are quite accurate.

1.
Bernitsas
,
M. M.
, and
Kokkinis
,
T.
, 1984, “
Global Static Instability of Risers
,”
J. Ship Res.
0022-4502,
28
(
4
), pp.
261
271
.
2.
Papoulias
,
F. A.
, and
Bernitsas
,
M. M.
, 1988, “
Autonomous Oscillations, Bifurcations and Chaotic Response of Moored Vessels
,”
J. Ship Res.
0022-4502,
32
(
3
), pp.
220
228
.
3.
Gottlieb
,
O.
, and
Yim
,
S. C.
, 1992, “
Nonlinear Oscillations, Bifurcations and Chaos in a Multi-Point Mooring System With a Geometric Nonlinearity
,”
Appl. Ocean. Res.
0141-1187,
14
(
6
), pp.
241
257
.
4.
Gottlieb
,
O.
, and
Yim
,
S. C.
, 1993, “
Drag-Induced Instability and Chaos in Mooring Systems
,”
Ocean Eng.
0029-8018,
129
(
6
), pp.
569
599
.
5.
Garza-Rios
,
L. O.
, and
Bernitsas
,
M. M.
, 1996, “
Analytical Expressions of the Stability & Bifurcation Boundaries for General Spread Mooring Systems
,”
J. Ship Res.
0022-4502,
40
(
4
), pp.
337
350
.
6.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 1986,
Nonlinear Dynamics and Chaos
,
1st ed.
,
Wiley
,
New York
; 2002, ibid.,
2nd ed.
, Wiley, New York.
7.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
8.
Lin
,
H.
, and
Yim
,
S. C. S.
, 1995, “
Noisy Nonlinear Motions of Moored Systems. Part 1: Analysis and Simulation
,”
J. Wtrwy., Harb. and Coast. Engrg. Div.
0044-8028,
123
(
5
), pp.
287
295
.
9.
Yim
,
S. C.
, and
Lin
,
H.
, 2000, “
Noisy Nonlinear Motions of a Moored System, II: An Experimental Study
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
128
(
3
), pp.
113
120
.
10.
Narayanan
,
S.
, and
Yim
,
S. C.
, 2004, “
Modeling and Identification of a Nonlinear SDOF Moored Structure, Part I, Analytical Models and Identification Algorithms
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
126
(
2
), pp.
175
182
.
11.
Yim
,
C. S.
, and
Narayanan
,
S.
, 2004, “
Modeling and Identification of a Nonlinear SDOF Moored Structure, Part II, Results and Sensitivity Study
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
126
(
2
), pp.
183
190
.
12.
Yim
,
S. C.
,
Myrum
,
M. A.
,
Gottlieb
,
O.
,
Lin
,
H.
, and
Shih
,
I.
, 1993, “
Summary *and Preliminary Analysis of Nonlinear Oscillations in a Submerged Mooring System Experiment
,” Ocean Engineering Program, Oregon State University, Report No OE-93-03.
13.
Chakrabarti
,
S. K.
, 2002,
The Theory and Practice of Hydrodynamics and Vibration
,
World Scientific
,
New Jersey
.
14.
Ochi
,
M. K.
, 1990,
Applied Probability and Stochastic Processes in Engineering and Physical Sciences
,
Wiley
,
New York
.
15.
Shinozuka
,
M.
, 1971, “
Simulation of Multivariate and Multidimensional Random Processes
,”
J. Acoust. Soc. Am.
0001-4966,
49
, pp.
357
367
.
You do not currently have access to this content.