The problem of transformation of the directional spectrum of an incident wave system over an intermediate-depth region of strongly varying 3D bottom topography is studied in the context of linear theory. The consistent coupled-mode model, developed by Athanassoulis and Belibassakis (J. Fluid Mech. 389, pp. 275–301 (1999)) and extended to three dimensions by Belibassakis et al. (Appl. Ocean Res. 23(6), pp. 319–336 (2001)) is exploited for the calculation of the linear transfer function, connecting the incident wave with the wave conditions at each point in the field. This model is fully dispersive and takes into account reflection, refraction, and diffraction phenomena, without any simplification apart the standard intermediate-depth linearization. The present approach permits the calculation of spectra of all interesting wave quantities (e.g., surface elevation, velocity, pressure) at every point in the liquid domain. The application of the present model to realistic geographical areas requires a vast amount of calculations, calling for the exploitation of advanced computational technologies. In this work, a parallel implementation of the model is developed, using the message passing programming paradigm on a commodity computer cluster. In that way, a direct numerical solution is made feasible for an area of 25km2 over Scripps and La Jolla submarine canyons in Southern California, where a large amount of wave measurements are available. A comparison of numerical results obtained by the present model with field measurements of free-surface frequency spectra transformation is presented, showing excellent agreement. The present approach can be extended to treat weakly nonlinear waves, and it can be further elaborated for studying wave propagation over random bottom topography.

1.
Berkhoff
,
J. C.
, 1972, “
Computation of Combined Refraction-Diffraction
,”
Proceedings of the 13th Conference on Coastal Engineering
,
ASCE
,
Vancouver
, Vol.
2
, pp.
471
490
.
2.
Mei
,
C. C.
, 1989,
The Applied Dynamics of Ocean Surface Waves
,
World Scientific
,
Singapore
.
3.
Kirby
,
J. T.
, 1986, “
A General Wave Equation for Waves Over Rippled Beds
,”
J. Fluid Mech.
0022-1120,
162
, pp.
171
186
.
4.
Booij
,
N.
, 1983, “
A Note on the Accuracy of the Mild-Slope Equation
,”
Coastal Eng.
0378-3839,
7
, pp.
191
203
.
5.
Miles
,
J. W.
, and
Chamberlain
,
P. G.
, 1998, “
Topographical Scattering of Gravity Waves
,”
J. Fluid Mech.
0022-1120,
361
, pp.
175
188
.
6.
Silva
,
R.
,
Borthwick
,
A. G. L.
, and
Taylor
,
R. E.
, 2005, “
Numerical Implementation of the Harmonic Modified Mild-Slope Equation
,”
Coastal Eng.
0378-3839,
52
, pp.
391
407
.
7.
Massel
,
S.
, 1993, “
Extended Refraction-Diffraction Equations for Surface Waves
,”
Coastal Eng.
0378-3839,
19
, pp.
97
126
.
8.
Chamberlain
,
P. G.
, and
Porter
,
D.
, 1995, “
The Modified Mild-Slope Equation
,”
J. Fluid Mech.
0022-1120,
291
, pp.
393
407
.
9.
Athanassoulis
,
G. A.
, and
Belibassakis
,
K. A.
, 1999, “
A Consistent Coupled-Mode Theory for the Propagation of Small-Amplitude Water Waves Over Variable Bathymetry Regions
,”
J. Fluid Mech.
0022-1120,
389
, pp.
275
301
.
10.
Chandrasekera
,
C. N.
, and
Cheung
,
K. F.
, 2001, “
Linear Refraction-Diffraction for Steep Bathymetry
,”
J. Waterway, Port, Coastal, Ocean Eng.
0733-950X,
127
(
3
), pp.
161
170
.
11.
Kim
,
J. W.
, and
Bai
,
K. J.
, 2004, “
A New Complementary Mild-Slope Equation
,”
J. Fluid Mech.
0022-1120,
511
, pp.
25
40
.
12.
Belibassakis
,
K. A.
,
Athanassoulis
,
G. A.
, and
Gerostathis
,
Th.
, 2001, “
A Coupled-Mode Model for the Refraction-Diffraction of Linear Waves Over Steep Three-Dimensional Bathymetry
,”
Appl. Ocean. Res.
0141-1187,
23
(
6
), pp.
319
336
.
13.
Wilkinson
,
B.
, and
Allen
,
M.
, 2005,
Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Message Passing Interface Forum
, 1994, “
MPI: A Message-Passing Interface Standard
,”
Int. J. Supercomput. Appl.
0890-2720,
8
(
3/4
), pp.
159
416
, special issue on MPI.
16.
Dagum
,
L.
, and
Menon
,
R.
, 1998, “
Openmp: An Industry-Standard API for Shared-Memory Programming
,”
IEEE Comput. Sci. Eng.
1070-9924,
5
(
1
), pp.
46
55
.
17.
Bova
,
S. W.
,
Breshears
,
C. P.
,
Gabb
,
H.
,
Kuhn
,
B.
,
Magro
,
B.
,
Eigenmann
,
R.
,
Gaertner
,
G.
,
Salvini
,
S.
, and
Scott
,
H.
, 2001, “
Parallel Programming With Message Passing and Directives
,”
Comput. Sci. Eng.
1521-9615,
3
(
5
), pp.
22
37
.
18.
Demirbilek
,
Z.
, and
Panchang
,
V.
, 1998, “
CGWAVE: A Coastal Surface Water Wave Model of Mild Slope Equation
,” U.S. Army Engineering, Waterway Experiment Station, Technical Report No. CHL-98-26.
19.
Bova
,
S. W.
,
Breshears
,
C. P.
,
Gabb
,
H.
,
Kuhn
,
B.
,
Magro
,
B.
,
Eigenmann
,
R.
,
Gaertner
,
G.
,
Salvini
,
S.
, and
Scott
,
H.
, 2001, “
Parallel Programming with Message Passing and Directives
,”
Comput. Sci. Eng.
1521-9615,
3
(
5
), pp.
22
37
.
20.
Booij
,
N.
,
Ris
,
R. C.
, and
Holthuijsen
,
L. H.
, 1999, “
A Third-Generation Wave Model for Coastal Regions. 1. Model Description and Validation
,”
J. Geophys. Res.
0148-0227,
104
(
C4
), pp.
7649
7666
.
21.
Ris
,
R. C.
,
Holthuijsen
,
L. H.
, and
Booij
,
N.
, 1999, “
A Third-Generation Wave Model for Coastal Regions. 2. Verification
,”
J. Geophys. Res.
0148-0227,
104
(
C4
), pp.
7667
7681
.
22.
Pelinovsky
,
E.
,
Razin
,
A. V.
, and
Sasorova
,
E. V.
, 1998, “
Berkhoff Approximation in a Problem on Surface Gravity Wave Propagation in a Basin With Bottom Irregularities
,”
Waves Random Media
0959-7174,
8
(
2
), pp.
255
268
.
23.
Ardhuin
,
F.
, and
Herbers
,
T. H. C.
, 2002, “
Bragg Scattering of Random Surface Gravity Waves by Irregular Seabed Topography
,”
J. Fluid Mech.
0022-1120,
451
, pp.
1
33
.
24.
Belibassakis
,
K. A.
, and
Athanassoulis
,
G. A.
, 2002, “
Extension of Second-Order Stokes Theory to Variable Bathymetry
,”
J. Fluid Mech.
0022-1120,
464
, pp.
35
80
.
25.
Goda
,
Y.
, 2000,
Random Seas and Design of Maritime Structures
,
2nd ed.
,
World Scientific
,
Singapore
.
26.
Turkel
,
E.
, and
Yefet
,
A.
, 1998, “
Absorbing PML Boundary Layers for Wave-Like Equations
,”
Appl. Numer. Math.
0168-9274,
27
, pp.
533
557
.
27.
Collino
,
F.
, and
Monk
,
P. B.
, 1998, “
Optimizing the Perfectly Matched Layer
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
164
, pp.
157
171
.
28.
Ochi
,
M. K.
, 1998,
Ocean Waves: The Stochastic Approach
,
Ocean Technology Series
,
Cambridge University Press
,
Cambridge, England
.
29.
Balay
,
S.
,
Buschelman
,
K.
,
Eijkhout
,
V.
,
Gropp
,
W. D.
,
Kaushik
,
D.
,
Knepley
,
M. G.
,
McInnes
,
L. C.
,
Smith
,
B. F.
, and
Zhang
,
H.
, 2004, “
Petsc Users Manual, Revision 2.1.5
,” Argonne National Laboratory, Report No. ANL-95/11.
30.
Demmel
,
J. W.
,
Gilbert
,
J. R.
, and
Li
,
X. S.
, 1999, “
An Asynchronous Parallel Supernodal Algorithm for Sparse Gaussian Elimination
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
20
(
4
), pp.
915
952
.
31.
Athanassoulis
,
G. A.
,
Belibassakis
,
K. A.
, and
Georgiou
,
Y.
, 2003, “
Transformation of the Point Spectrum Over Variable Bathymetry Regions
,”
13th International Offshore and Polar Conference and Exhibition, ISOPE2002
,
Honolulu, HI
.
32.
Donelan
,
M. A.
,
Hamilton
,
J.
, and
Hui
,
H. H.
, 1985, “
Directional Spectra of Wind-Generated Waves
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
315
, pp.
509
562
.
33.
Massel
,
S.
, 1996,
Ocean Surface Waves: Their Physics and Prediction
,
World Scientific
,
Singapore
.
34.
Holthuijsen
,
L. H.
,
Herman
,
A.
, and
Booij
,
N.
, 2003, “
Phase-Decoupled Refraction-Diffraction for Spectral Wave Models
,”
Coastal Eng.
0378-3839,
49
, pp.
291
305
.
35.
Peak
,
S. D.
, 2004, “
Wave Refraction Over Complex Nearshore Bathymetry
,” MS thesis, Naval Postgraduate School, Monterey.
You do not currently have access to this content.