The one-dimensional fast Fourier transform (FFT) has been applied extensively to simulate Gaussian random wave elevations and water particle kinematics. The actual sea elevations/kinematics exhibit non-Gaussian characteristics that can be represented mathematically by a second-order random wave theory. The elevations/kinematics formulations contain frequency sum and difference terms that usually lead to expensive time-domain dynamic analyses of offshore structural responses. This study aims at a direct and efficient two-dimensional FFT algorithm for simulating the frequency sum terms. For the frequency-difference terms, inverse FFT and forward FFT are implemented, respectively, across the two dimensions of the wave interaction matrix. Given specified wave conditions, the statistics of simulated elevations/kinematics compare well with not only the empirical fits but also the analytical solutions based on a modified eigenvalue/eigenvector approach, while the computational effort of simulation is very economical. In addition, the stochastic analyses in both time domain and frequency domain show that, attributable to the second-order nonlinear wave effects, the near-surface Morison force and induced linear oscillator response are more non-Gaussian than those subjected to Gaussian random waves.

1.
Rice
,
S. O.
, 1945, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
0005-8580,
24
, pp.
45
156
.
2.
Stansberg
,
C. T.
, 1994, “
Second-Order Effects in a Random Wave Modeling
,”
International Symposium: Waves—Physical and Numerical Modeling
,
University of British Columbia, Vancouver, Canada
, Aug. 21–24, pp.
793
802
.
3.
Tick
,
L. J.
, 1959, “
A Nonlinear Random Model of Gravity Waves (I)
,”
J. Math. Mech.
0095-9057,
8
(
5
), pp.
643
651
.
4.
Longuet-Higgins
,
M. S.
, 1963, “
The Effect of Nonlinearities on Statistical Distributions in the Theory of Sea Waves
,”
J. Fluid Mech.
0022-1120,
17
, pp.
459
480
.
5.
Hasselmann
,
K.
, 1962, “
On the Nonlinear Energy Transfer in a Gravity-Wave Spectrum, Part 1, General Theory
,”
J. Fluid Mech.
0022-1120,
12
, pp.
481
500
.
6.
Sharma
,
J. N.
, and
Dean
,
R. G.
, 1979, “
Development and Evaluation of a Procedure for Simulating a Random Directional Second Order Sea Surface and Associated Wave Forces
,” Ocean Eng. Rep., 20,
University of Delaware
.
7.
Huang
,
N. E.
,
Long
,
S. R.
,
Tung
,
C. C.
, and
Yuan
,
Y.
, 1983, “
A Non-Gaussian Statistical Model for Surface Elevation of Nonlinear Random Wave Fields
,”
J. Geophys. Res.
0148-0227,
88
(
C12
), pp.
7597
7606
.
8.
Tayfun
,
M. A.
, 1986, “
On Narrow-Band Representation of Ocean Waves
,”
J. Geophys. Res.
0148-0227,
91
(
6
), pp.
7743
7752
.
9.
Martinsen
,
T.
, and
Winterstein
,
S. R.
, 1992, “
On the Skewness of Random Surface Waves
,”
Proceedings of the Second ISOPE Conference
San Francisco
, pp.
472
478
.
10.
Langley
,
R. S.
, 1987, “
A Statistical Analysis of Non-Linear Random Waves
Ocean Eng.
0029-8018,
14
(
5
), pp.
389
407
.
11.
Bouyssy
,
V.
, and
Rackwitz
,
R.
, 1997, “
Polynomial Approximation of Morison Wave Loading
,”
J. Offshore Mech. Arct. Eng.
0892-7219,
119
(
1
), pp.
30
36
.
12.
Quek
,
S. T.
,
Zheng
,
X. Y.
, and
Moan
,
T.
, 2005, “
Nonlinear Wave Effects on Distributions of Wave Elevation and Morison Force
,”
Proceedings of the Ninth ICOSSAR Conference
,
G.
Augusti
,
G. I.
Schuëller
, and
M.
Ciampoli
, eds.,
Millpress
,
Rotterdam
, pp.
3325
3334
.
13.
Borgman
,
L. E.
, 1969, “
Ocean Wave Simulation for Engineering Design
,”
J. Waterways and Harbors
,
95
(
4
), pp.
557
583
.
14.
Zheng
,
X. Y.
, and
Liaw
,
C. Y.
, 2005, “
Response Cumulant Spectral Analysis of Linear Oscillators Driven by Morison Forces
,”
Appl. Ocean. Res.
0141-1187,
26
(
3–4
), pp.
154
161
.
15.
Stansberg
,
C. T.
, 1998, “
Non-Gaussian Extremes in Numerically Generated Second-Order Random Waves on Deep Water
,”
Proceedings of the Eighth ISOPE Conference
,
Montreal, Canada
, pp.
103
110
.
16.
Hudspeth
,
R. T.
, and
Chen
,
M. C.
, 1979, “
Digital Simulation of Nonlinear Random Waves
,”
J. Waterways and Harbors
,
105
(
WW1
), pp.
67
85
.
17.
Stansberg
,
C. T.
, 1993, “
Second-order Numerical Reconstruction of Laboratory Generated Random Waves
,”
OMAE Conference
pp.
143
151
.
18.
Zheng
,
X. Y.
, and
Liaw
,
C. Y.
, 2004, “
Nonlinear Frequency-Domain Analysis of Jack-Up Platforms
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
9
), pp.
1519
1534
.
19.
Tung
,
C. C.
, 1995, “
Effects of Free Surface Fluctuation on Total Wave Forces on Cylinder
,”
J. Eng. Mech.
0733-9399,
121
(
2
), pp.
274
280
.
20.
Liaw
,
C. Y.
, and
Zheng
,
X. Y.
, 2001, “
Inundation Effect of Wave Forces on Jack-Up Platforms
,”
Int. J. Offshore Polar Eng.
1053-5381,
11
(
2
), pp.
87
92
.
21.
Stansberg
,
C. T.
, and
Gudmestad
,
O. T.
, 1996, “
Nonlinear Random Wave Kinematics Models Verified Against Measurements in Steep Waves
,”
15th OMAE Conference
, pp.
15
24
.
22.
Newland
,
D. E.
, 1993,
Random Vibrations, Spectral and Wavelet Analysis
,
Longman Scientific & Technical
,
New York
, Chap. 15.
23.
Forristall
,
G. Z.
, 2000, “
Wave Crest Distributions: Observations and Second-order Theory
,”
J. Phys. Oceanogr.
1520-0485,
30
, pp.
1931
1943
.
24.
Zhang
,
J.
,
Chen
,
L.
,
Ye
,
M.
, and
Robert
,
E. R.
, 1996, “
Hybrid Wave Model for Unidirectional Irregular Waves—Part I. Theory and Numerical Scheme
,”
Appl. Ocean. Res.
0141-1187,
18
, pp.
77
92
.
25.
Yang
,
J.
, and
Zhang
,
J.
, 2000, “
Effects of Wave Intermittency and Nonlinearity on Wave Loads
,”
Proceedings of ETCE/OMAE2000 Joint Conference
, pp.
1
11
.
26.
Vinje
,
T.
, and
Haver
,
S.
, 1994, “
On the Non-Gaussian Structure of Ocean Waves
,”
Proceedings of the Seventh BOSS Conference
,
2
,
MIT
,
Cambridge
, pp.
453
480
.
27.
Winterstein
,
S. R.
, and
Jha
,
A. K.
, 1995, “
Random Models of Second-order Waves and Local Wave Statistics
,”
Proceedings of the Tenth ASCE Eng. Mech. Specialty Conference
, pp.
1171
1174
.
28.
Winterstein
,
S. R.
, 1988, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1772
1790
.
29.
Kriebel
,
D.
, and
Dawson
,
T. H.
, 1993, “
Nonlinearity in Wave Crest Statistics
,”
Proceedings of the Second International Symposium on Wave Measurement & Analysis, New Orleans
,
LA
, pp.
61
75
.
30.
Hu
,
S-L. J.
, 1993, “
Nonlinear Random Water Wave
,” Book: Computational Stochastic Mechanics,
A. H-D.
Cheng
and
C. Y.
Yang
, eds.,
Elsevier
,
New York
, pp.
519
543
.
You do not currently have access to this content.