Spars have become an “industry solution” for deepwater developments. Vortex-induced motion (VIM) of spar platforms in currents remains an important design concern. Although strakes are effective at suppressing riser VIM, all three straked classical spars in the Gulf of Mexico have experienced significant VIM events. These are not examples of poor design but indicate a lack of adequate tools for predicting spar VIM. This paper presents the development and validation of unsteady Reynolds-averaged Navier-Stokes (URANS) methods to predict real-world spar VIM behavior. It includes the ability to address rough surfaces and high supercritical Reynolds numbers. The resulting algorithms are used to assess the effectiveness of active and passive control strategies for suppressing spar VIM. Active control consists of injecting high-pressure water tangentially into the boundary layer and is shown to be extremely effective at reducing drag and VIM amplitudes. Passive control utilizes a sleeve to channel high-pressure stagnation flow into the boundary layer and is found less effective.

1.
Bearman
,
P.
, 1984, “
Vortex Shedding From Bluff Bodies
,”
Annu. Rev. Fluid Mech.
0066-4189,
16
, pp.
195
222
.
2.
Blevins
,
R. D.
, 1990,
Flow-Induced Vibrations
,
Van Norstrand
, New York.
3.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
477
539
.
4.
Sarpkaya
,
T.
, 1978, “
Fluid Forces on Oscillating Cylinders
,”
J. Wtrwy., Port, Coast., and Oc. Div.
0148-9895,
104
, pp.
275
290
.
5.
Yeung
,
R. W.
, and
Vaidhyanathan
,
M.
, 1993, “
Flow Past Oscillating Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
115
(
4
), pp.
197
205
.
6.
Jones
,
G.
,
Cincotta
,
J.
, and
Walker
,
W.
, 1969, “
Aerodynamic Forces on a Stationary and Oscillating Circular Cylinder at High Reynolds Numbers
,” NASA-TR R-300.
7.
Lee
,
C.
, 2002, “
Large Eddy Simulation of Rough-Wall Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
40
(
10
), pp.
2127
2129
.
8.
Kogstad
,
P.
,
Antonia
,
R.
, and
Browne
,
L.
, 1992, “
Comparison of Rough and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
245
, pp.
599
617
.
9.
Kogstad
,
P.
, and
Antonia
,
R.
, 1999, “
Surface Roughness Effects in Turbulent Boundary Layers
,”
Exp. Fluids
0723-4864,
27
(
5
), pp.
450
460
.
10.
Grass
,
A.
,
Stuart
,
R.
, and
Manisour
,
M.
, 1995, “
Common Vortical Structure of Turbulent Flows Over Smooth and Rough Boundaries
,”
AIAA J.
0001-1452,
31
(
5
), pp.
837
847
.
11.
Perry
,
A.
, and
Joubert
,
P.
, 1963, “
Rough Wall Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
0022-1120,
17
, pp.
193
213
.
12.
Perry
,
A.
,
Scifield
,
W.
, and
Joubert
,
P.
, 1969, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
37
, pp.
363
413
.
13.
Raspach
,
M.
,
Antonia
,
R.
, and
Rajagopalian
,
S.
, 1991, “
Rough-Wall Turbulent Boundary Layers
,”
Appl. Mech. Rev.
0003-6900,
44
(
1
), pp.
1
26
.
14.
Korpus
,
R.
, and
Falzarano
,
J. M.
, 1997, “
Prediction of Viscous Ship Roll Damping by Unsteady Navier-Stokes Techniques
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
119
(
2
), pp.
108
113
.
15.
Korpus
,
R.
,
Jones
,
P.
,
Oakley
,
O.
, and
Imas
,
L.
, 2000, “
Prediction of Viscous Forces on Oscillating Cylinders by Reynolds-Averaged Navier-Stokes Solver
,”
Trans. Int. Soc. Offshore Polar Eng.
16.
Korpus
,
R.
,
Hubbard
,
B.
,
Jones
,
P.
,
Stromgren
,
C.
, and
Bennett
,
J.
, 1998, “
Hydrodynamic Design of Integrated Propulsor/Stern Concepts by Reynolds-Averaged Navier-Stokes Technique
,”
Proc. of 7th Int. Symp. on Practical Design of Ships and Mobile Units
, The Hague.
17.
Korpus
,
R.
, 2004, “
Reynolds-Averaged Navier-Stokes in an Integrated Design Environment
,” Trans. Madrid Deseno de Yates, Madrid.
18.
Amromin
,
E.
,
Mizine
,
I.
,
Crook
,
L.
,
Day
,
W.
, and
Korpus
,
R.
, 2003, “High Speed Trimaran Drag: Numerical Analysis and Model Tests,” J. Ship Res., 47(2).
19.
Chen
,
H. C.
, and
Korpus
,
R. A.
, 1993, “A Multi-Block Finite-Analytic Reynolds-Averaged Navier-Stokes Method for 3-D Incompressible Flows,” ASME J. Fluids Eng.
20.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
(
4
), pp.
641
648
.
21.
Fan
,
S.
Lakshminarayana
,
B.
, and
Barnett
,
M.
, 1993, “
Low-Reynolds Number k-ϵ Model for Unsteady Turbulent Boundary Layer Flows
,”
AIAA J.
0001-1452,
31
(
10
), pp.
1777
1784
.
22.
Chen
,
H. C.
,
Patel
,
V. C.
, and
Ju
,
S.
, 1990, “
Solutions of Reynolds-Averaged Navier-Stokes Equations for Three-Dimensional Incompressible Flows
,”
J. Comput. Phys.
0021-9991,
88
(
2
), pp.
305
336
.
23.
Kumarasamy
,
S.
,
Korpus
,
R.
, and
Barlow
,
J.
, 1997, “
Computation of Noise Due to the Flow Over a Circular Cylinder
,”
Proc. of 2nd Computational Aeroacoustics (CAA) Workshop on Benchmark Problems
, Tallahassee, FL, Nov. 4–5, 1996, NASA, Washington, DC, NASA Conference Publication No. 3352, pp.
297
303
.
24.
Saki
,
E.
, and
Biringen
,
S.
, 1996, “
Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual-Boundary Method
,”
J. Comput. Phys.
0021-9991,
123
(
2
), pp.
450
465
.
25.
Goldstein
,
D.
,
Handler
,
R.
, and
Sinivich
,
L.
, 1993, “
Modeling a No-Slip Flow Boundary with an External Force Field
,”
J. Comput. Phys.
0021-9991,
105
(
2
), pp.
354
366
.
26.
Bandyopadhyay
,
P.
, and
Watson
,
R.
, 1988, “
Structure of Rough-Wall Turbulent Boundary Layers
,”
Phys. Fluids
0031-9171,
31
(
7
), pp.
1877
1883
.
27.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic Press
, New York.
28.
Schlichting
,
H.
, 1955,
Boundary Layer Theory
,
7th ed.
,
McGraw-Hill
, New York.
29.
Ding
,
Z.
,
Batasubramanian
,
S.
,
Lokkan
,
R.
, and
Yung
,
T.-W.
, 2004, “
Lift and Damping Characteristics of Bare and Straked Cylinders at Riser Scale Reynolds Numbers
,” Offshore Tech. Conf., Houston.
30.
Hover
,
F.
,
Techet
,
A.
, and
Triantafyllou
,
M.
, 1998, “
Forces on Oscillating Uniform and Tapered Cylinders in Cross Flow
,”
J. Fluid Mech.
0022-1120,
363
, pp.
97
114
.
31.
Liu
,
G.
,
Devlin
,
P.
, and
Kwan
,
C.
, 2004, “
Mooring Design for Spar VIM in West Africa
,”
Proc. Offshore Tech. Conf.
32.
Shu
,
H.
, and
Allen
,
D.
, 2000, “
Active Apparatus and Method for Reducing Fluid Induced Stresses by Introduction of Energetic Flow Into Boundary Layer Around an Element
,” U.S. Patent No. 6551029.
33.
Schultz
,
K.
,
Kallinderis
,
Y.
, and
Liapis
,
S.
, 2000,
Active Control of Spar Vortex-Induced Motions
, unpublished report.
34.
Brown
,
N.
,
Grinius
,
V.
, and
Shaar
,
K.
, 2000, “
Water Jet VIV Reduction
,” OMAE Conf., New Orleans, Oral Presentation.
35.
Shu
,
H.
, and
Allen
,
D.
, 2001, “
Passive Apparatus and Method for Reducing Fluid Induced Stresses by Introduction of Energetic Flow Into Boundary Layer Around Structures
,” U.S. Patent No. 20020066570.
You do not currently have access to this content.