The present work treats the problem of the dynamic behavior of a vertical slender structure subject to combined axial and transverse motions. The solution method is based on a Galerkin-type semi-analytical formulation. The responses to sinusoidal monochromatic excitation are assessed with respect to the significance of each mode and their spectral content. As a result, a reduced, yet nonlinear, lumped model for each one of the significant modes of the structure is generated. The parameters of these fixed-structure models can be determined systematically by two methods relying on the spectral analysis of the numerically calculated modal responses of the structure. The resulting models constitute an explicit input-output relationship between the imposed motions and the modes of the structure, useful for stability analysis, design and control.

1.
Passano
,
E.
, and
Larsen
,
C. M.
, 2006, “
Efficient Analysis of a Catenary Riser
,”
Proc. of 25th Int. Conf. on Offshore Mechanics and Arctic Enginerring, OMAE 2006
, Hamburg, Germany, Paper No. OMAE2006-92308.
2.
Triantafyllou
,
M. S.
, 1994, “
Cable Mechanics for Moored Floating Structures
,”
Proc. of 7th Int. Symposium on the Behavior Offshore Structures (BOSS ’94)
, Boston, MA, Pergamon, Vol.
2
, pp.
57
77
.
3.
Chatjigeorgiou
,
I. K.
, and
Mavrakos
,
S. A.
, 2002, “
Bounded and Un-bounded Coupled Transverse Response of Parametrically Excited Vertical Marine Risers and Tensioned Cable Legs for Marine Applications
,”
Appl. Ocean. Res.
0141-1187,
24
(
6
), pp.
341
354
.
4.
Chatjigeorgiou
,
I. K.
, 2004, “
On the Parametric Excitation of Vertical Elastic Slender Structures and the Effect of Damping in Marine Applications
,”
Appl. Ocean. Res.
0141-1187,
26
(
1
), pp.
23
33
.
5.
Chatjigeorgiou
,
I. K.
, and
Mavrakos
,
S. A.
, 2005, “
Nonlinear Resonances of Parametrically Excited Risers—Numerical and Analytic Investigation for Ω=2ω1
,”
Comput. Struct.
0045-7949,
83
(
8-9
), pp.
560
573
.
6.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
, Englewood Cliffs, NJ.
7.
Schetzen
,
M.
, 1980,
The Volterra and Wiener Theories of Nonlinear Systems
,
Wiley
, New York.
8.
Chatterjee
,
A.
, and
Vyas
,
N. S.
, 2004, “
Non-linear Parameter Estimation in Multi-Degree-of-Freedom Systems Using Multi-Input Volterra Series
,”
Math. Phys. Electron. J.
1086-6655,
18
, pp.
457
489
.
9.
Pacheco
,
R. P.
, and
Steffen
,
V.
Jr.
, 2004, “
On the Identification of Non-linear Mechanical Systems Using Orthogonal Functions
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1147
1159
.
10.
Lucia
,
D. J.
,
Beran
,
P. S.
, and
Silva
,
W. A.
, 2004, “
Reduced-Order Modeling: New Approaches for Computational Physics
,”
Prog. Aerosp. Sci.
0376-0421,
40
, pp.
51
117
.
11.
Rugh
,
W. J.
, 1981,
Nonlinear System Theory: The Volterra/Wiener Approach
,
The John Hopkins University Press
, Baltimore, MD.
12.
Doyle
,
F. J.
,
Pearson
,
R. K.
, and
Ogunnaike
,
B. A.
, 2001,
Identification and Control Using Volterra Models
,
Springer-Verlag
, Berlin, Communications and Control Engineering Series.
13.
Khalil
,
H. K.
, 2000,
Nonlinear Systems
,
3rd ed.
,
Prentice-Hall
, Englewood Cliffs, NJ.
14.
Proakis
,
J. G.
, and
Manolakis
,
D. G.
, 1996,
Digital Signal Processing: Principles, Algorithms and Applications
,
3rd ed.
,
Prentice-Hall
, Englewood Cliffs, NJ.
15.
Bose
,
N. K.
, 1985,
Digital Filters: Theory and Applications
,
North-Holland
, Amsterdam.
16.
Ljung
,
L.
, 1998,
System Identification: Theory for the User
,
2nd ed.
,
Prentice-Hall
, Englewood Cliffs, NJ, Information and System Sciences Series.
You do not currently have access to this content.