Traditionally, solid–liquid mixing has always been regarded as an empirical technology with many aspects of mixing, dispersing, and contacting related to power draw. One important application of solid–liquid mixing is the preparation of brine from sodium formate. This material has been widely used as a drilling and completion fluid in challenging environments such as in the Barents Sea. In this paper large-eddy simulations, of a turbulent flow in a solid–liquid, baffled, cylindrical mixing vessel with a large number of solid particles, are performed to obtain insight into the fundamental aspects of a mixing tank. The impeller-induced flow at the blade tip radius is modeled by using the sliding mesh. The simulations are four-way coupled, which implies that both solid–liquid and solid–solid interactions are taken into account. By employing a soft particle approach the normal and tangential forces are calculated acting on a particle due to viscoelastic contacts with other neighboring particles. The results show that the granulated form of sodium formate may provide a mixture that allows faster and easier preparation of formate brine in a mixing tank. In addition it is found that exceeding a critical size for grains phenomena, such as caking, can be prevented. The obtained numerical results suggest that by choosing appropriate parameters a mixture can be produced that remains free-flowing no matter how long it is stored before use.

1.
Mersmann
,
A.
, 2001,
Crystallization Technology Handbook
,
2nd ed.
,
Marcel Dekker
,
New York
.
2.
Armenante
,
P. M.
, and
Tsai
,
D.
, 1988, “
Agitation Requirements for Complete Dispersion of Emulsions
,”
Proceedings AICHE Annual Meeting
,
Washington, D.C.
, November.
3.
Bryant
,
J.
, 1977, “
The Characterization of Mixing in Fermenters
,”
Adv. Biochem. Eng./Biotechnol.
0724-6145,
5
, pp.
101
123
.
4.
Baldyga
,
J.
, and
Bourne
,
J. R.
, 1984, “
A Fluid Mechanical Approach to Turbulent Mixing and Chemical Reaction
,”
Chem. Eng. Commun.
0098-6445,
28
, pp.
231
278
.
5.
Baldi
,
G.
,
Conti
,
R.
, and
Gianetto
,
A.
, 1981, “
Concentration Profile for Solids Suspended in a Continuous Agitated Reactor
,”
AIChE J.
0001-1541,
27
, pp.
1017
1020
.
6.
Barresi
,
A.
, and
Baldi
,
G.
, 1987, “
Solid Dispersion in an Agitated Vessel
,”
Chem. Eng. Sci.
0009-2509,
42
, pp.
2949
2956
.
7.
Mactaggart
,
R. S.
,
Nasr-El-Din
,
H. A.
, and
Masliyah
,
J. H.
, 1993, “
Sample Withdrawal From a Slurry Mixing Tank
,”
Chem. Eng. Sci.
0009-2509,
48
, pp.
921
931
.
8.
Nasr-El-Din
,
H. A.
,
Shook
,
C. A.
, and
Colwell
,
J.
, 1987, “
A Conductivity Probe for Measuring Local Concentration in Slurry Systems
,”
Int. J. Multiphase Flow
0301-9322,
13
, pp.
365
378
.
9.
Chudacek
,
M. W.
, 1986, “
Relationships Between Solids Suspension Criteria, Mechanism of Suspension, Tank Geometry, and Scale-up Parameters in Stirred Tank
,”
Ind. Eng. Chem.
0019-7866,
25
, pp.
391
401
.
10.
Zwietering
,
T. N.
, 1958, “
Suspending of Solid Particles in Liquid by Agitators
,”
Chem. Eng. Sci.
0009-2509,
8
, pp.
244
253
.
11.
Tatterson
,
G. B.
, 1994,
Scaleup and Design of Industrial Mixing Processes
,
McGraw-Hill
,
New York
.
12.
Paul
,
E. L.
,
Atiemo-Obeng
,
V. A.
, and
Kresta
,
S. M.
, eds., 2004,
Handbook of Industrial Mixing: Science and Practice
,
Wiley
,
New York
.
13.
Mathieu
,
J.
, and
Scott
,
J.
, 2001
An Introduction to Turbulent Flow
,
Cambridge University Press
,
Cambridge
.
14.
Revstedt
,
J.
,
Fuchs
,
L.
, and
Trägårdh
,
C.
, 1998, “
Large Eddy Simulation of the Turbulent Flow in a Stirred Tank
,”
Chem. Eng. Sci.
0009-2509,
53
(
24
), pp.
4041
4053
.
15.
Derksen
,
J.
, and
Van den Akker
,
H. E. A.
, 1999, “
Large Eddy Simulation on the Flow Driven by a Rushton Turbine
,”
AIChE J.
0001-1541,
45
(
2
), pp.
209
221
.
16.
Lu
,
Z.
,
Liao
,
Y.
,
Qian
,
D.
,
McLaughlin
,
J. B.
,
Derksen
,
J. J.
, and
Kontomaris
,
K.
, 2002, “
Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid
,”
J. Comput. Phys.
0021-9991,
181
, pp.
675
704
.
17.
Moin
,
P.
, 2002, “
Advances in Large Eddy Simulation Methodology for Complex Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
710
720
.
18.
Yeoh
,
S. L.
,
Papadakis
,
G.
,
Lee
,
K. C.
, and
Yianneskis
,
M.
, 2004, “
Large Eddy Simulation of Turbulent Flow in Rushton Impeller Stirred Reactor With a Sliding-Deforming Mesh Methodology
,”
Chem. Eng. Technol.
0930-7516,
27
(
3
), pp.
257
263
.
19.
Pope
,
S. B.
, 2000,
Turbulent Flow
,
Cambridge University Press
,
Cambridge, UK
.
20.
Julsing
,
H. G.
, and
McCrindle
,
R. I.
, 2000, “
The Recovery of Precious Metals From Acidic Effluents Using Sodium Formate
,”
Water Sci. Technol.
0273-1223,
42
, pp.
63
69
.
21.
Groschuff
,
E.
, Ber Dtsch., 1903,
Ber. Dtsch. Chem. Ges.
,
36
, pp.
1783
4351
.
22.
Sidgwick
,
N. V.
, and
Gentle
,
J. A. H. R.
, 1922, “
The Solubilities of the Alkali Formates and Acetates in Water
,”
J. Chem. Soc.
0368-1769,
121
, pp.
1837
1843
.
23.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
, 2006, “
Complex Flow Dynamics in Dense Granular Flows-Part 1: Experimentation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
648
657
.
24.
Bordbar
,
M. H.
, and
Zamankhan
,
P.
, 2007, “
Dynamical States of Bubbling in Vertically Vibrated Granular Materials, Part II: Theoretical Analysis and Simulations
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
, pp.
273
299
.
25.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
.
26.
Menon
,
S.
, and
Kim
,
W.-W.
, 1996, “
High Reynolds Number Flow Simulations Using the Localized Dynamic Subgrid-Scale Model
,”
Proceedings 34th Aerospace Science Meeting
,
Reno, NV
, AIAA Paper No. 96-0425.
27.
Chen
,
L.
,
Garimella
,
S. V.
,
Reizes
,
J. A.
, and
Leonardi
,
E.
, 1999, “
The Development of a Bubble Rising in a Viscous Liquid
,”
J. Fluid Mech.
0022-1120,
387
,
61
96
.
28.
Magnaudet
,
J.
, and
Eames
,
I.
, 2000, “
The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
659
708
.
29.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
, 2001, “
Large-Eddy Simulation of Turbulence Gas-Particle Flow in a Vertical Channel: Effect of Concidering Interparticle Collisions
,”
J. Fluid Mech.
0022-1120,
442
, pp.
303
334
.
30.
Phan-Thien
,
N.
, 2002,
Understanding Viscoelasticity
,
Springer
,
Heidelberg, Germany
.
31.
Silbert
,
L. E.
,
Ertas
,
D.
,
Grest
,
G. S.
,
Hasley
,
T. S.
,
Levin
,
D.
, and
Plimpton
,
S. J.
, 2001, “
Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology
,”
Phys. Rev. E
1063-651X,
64
,
051302
.
32.
Brilliantov
,
N. V.
,
Spahn
,
F.
, and
Hertzsch
,
J. M.
, 1996, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
1063-651X,
53
(
5
), pp.
5382
5392
.
33.
Zamankhan
,
P.
,
Malinen
,
P.
, and
Lepomäki
,
H.
, 1997, “
Application of Neural Networks to Mass-Transfer Predictions in a Fast Fluidaized Bed of Fine Solids
,”
AIChE J.
0001-1541,
43
(
7
), pp.
1684
1690
.
34.
Cussler
,
E. L.
, 1997,
Diffusion Mass Transfer in Fluid Systems
,
Cambridge University Press
,
New York
.
35.
Dormand
,
J. R.
, and
Prince
,
P. J.
, 1980, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
0377-0427,
6
, pp.
19
26
.
36.
Zamankhan
,
P.
, 1995, “
Kinetic Theory of Multi-Component Dense Mixtures of Slightly Inelastic Spherical Particles
,”
Phys. Rev. E
1063-651X,
52
, pp.
4877
4891
.
37.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
38.
Honkanen
,
M.
,
Koohestany
,
A.
,
Hatunen
,
T.
,
Saarenrinne
,
P.
, and
Zamankhan
,
P.
, 2005, “
Large Eddy Simulation and PIV Experiments of a Two Phase Air-Water Mixer
,”
Proceedings of FEDSM2005, ASME Fluids Engineering Summer Conference
, 2005,
Houston, TX
.
39.
Eloranta
,
H.
,
Peganov
,
S.
,
Saarenrinne
,
P.
, and
Zamankhan
,
P.
, 2006, “
Experimentations and Modeling of Brine Mixing Tanks
,”
Phys. Fluids
1070-6631, to be published.
40.
Richard
,
H.
, and
Raffel
,
M.
, 2001, “
Principle and Applications of the Background Oriented Schlieren (BOS) Method
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
1576
1585
.
41.
Mäkipere
,
K.
and
Zamankhan
,
P.
, 2006, “
Simulation of Fiber Suspensions—A Multiscale Approach
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
446
456
.
42.
Speziale
,
C. G.
,
Erlebacher
,
G.
,
Zang
,
T. A.
, and
Hussaini
,
M. Y.
, 1988, “
The Subgrid Scale Modeling of Compressible Turbulence
,”
Phys. Fluids
0031-9171,
31
,
940
.
43.
Bordbar
,
M. H.
, and
Zamankhan
,
P.
, 2007, “
Dynamical States of Bubbling in Vertically Vibrated Granular Materials, Part I: Collective Processes
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
12
, pp.
254
272
.
This content is only available via PDF.
You do not currently have access to this content.