In this paper, the occurrence of extreme events due to the four-wave resonance interaction in weakly nonlinear water waves is investigated. The starting point is the Zakharov equation, which governs the dynamics of the spectral components of the surface displacement. It is proven that the optimal spectral components giving an extreme crest are solutions of a well-defined constrained optimization problem. A new analytical expression for the probability of exceedance of the wave crest is then proposed for the prediction of freak wave events.

1.
Wist
,
H. T.
,
Myrhaug
,
D.
, and
Rue
,
H.
, 2002, “
Joint Distributions of Successive Wave Crest Heights and Successive Wave Trough Depths for Second-Order Nonlinear Waves
,”
J. Ship Res.
0022-4502,
46
(
3
), pp.
175
185
.
2.
Boccotti
,
P.
, 1981, “
On the Highest Waves in a Stationary Gaussian Process
,”
Atti Accad. Ligure Sci. Lett., Genoa
0365-0278,
38
, pp.
271
302
.
3.
Boccotti
,
P.
, 1989, “
On Mechanics of Irregular Gravity Waves
,”
Atti Accad. Naz. Lincei, Mem., Cl. Sci. Fis., Mat. Nat., Sez. 1a
0365-0286,
19
, pp.
11
170
.
4.
Boccotti
,
P.
,
Barbaro
,
G.
, and
Mannino
,
L.
, 1993, “
A Field Experiment on the Mechanics of Irregular Gravity Waves
,”
J. Fluid Mech.
0022-1120,
252
, pp.
173
186
.
5.
Boccotti
,
P.
, 1997, “
A General Theory of Three-Dimensional Wave Groups
,”
Ocean Eng.
0029-8018,
24
, pp.
265
300
.
6.
Boccotti
,
P.
, 2000,
Wave Mechanics for Ocean Engineering
,
Elsevier Science
,
Oxford
, p.
495
.
7.
White
,
B. S.
, and
Fornberg
,
B.
, 1998, “
On the Chance of Freak Waves at Sea
,”
J. Fluid Mech.
0022-1120,
355
, pp.
113
138
.
8.
Janssen
,
P. A. E. M.
, 2003, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
0022-3670,
33
(
4
), pp.
863
884
.
9.
Longuet-Higgins
,
M. S.
, 1976, “
On the Nonlinear Transfer of Energy in the Peak of a Gravity-Wave Spectrum: A Simplified Model
,”
Trans. R. Soc. London Ser. A
,
347
, pp.
311
328
.
10.
Phillips
,
O. M.
, 1960, “
On the Dynamics of Unsteady Gravity Waves of Finite Amplitude. I. The Elementary Interactions
,”
J. Fluid Mech.
0022-1120,
9
, pp.
193
217
.
11.
Phillips
,
O. M.
, 1961, “
On the Dynamics of Unsteady Gravity Waves of Finite Amplitude. II. Local Properties of a Random Wave Field
,”
J. Fluid Mech.
0022-1120,
11
, pp.
143
155
.
12.
Longuet-Higgins
,
M. S.
, and
Phillips
,
O. M.
, 1962, “
Phase Velocity Effects in Tertiary Wave Interactions
,”
J. Fluid Mech.
0022-1120,
12
, pp.
333
336
.
13.
Benney
,
D. J.
, 1962, “
Non-Linear Gravity Wave Interactions
,”
J. Fluid Mech.
0022-1120,
14
, pp.
577
584
.
14.
Zakharov
,
V.
, 1999, “
Statistical Theory of Gravity and Capillary Waves on the Surface of a Finite-Depth Fluid: Three-Dimensional Aspects of Air-Sea Interaction
,”
Eur. J. Mech. B/Fluids
0997-7546,
18
(
3
), pp.
327
344
.
15.
Krasitskii
,
V. P.
, 1994, “
On Reduced Equations in the Hamiltonian Theory of Weakly Nonlinear Surface Waves
,”
J. Fluid Mech.
0022-1120,
272
, pp.
1
20
.
16.
Dysthe
,
K. B.
,
Trulsen
,
K.
,
Krogstad
,
H. E.
, and
Socquet-Juglard
,
H.
, 2003, “
Evolution of a Narrow Band Spectrum of Random Surface Gravity Waves
,”
J. Fluid Mech.
0022-1120,
478
, pp.
1
10
.
17.
Trulsen
,
K.
,
Kliakhandler
,
I.
,
Dysthe
,
K. B.
, and
Velarde
,
M. G.
, 2000, “
On Weakly Nonlinear Modulation of Waves on Deep Water
,”
Phys. Fluids
1070-6631,
12
, pp.
2432
2437
.
18.
Osborne
,
A. R.
,
Onorato
,
M.
, and
Serio
,
M.
, 2000, “
The Nonlinear Dynamics of Rogue Waves and Holes in Deep-Water Gravity Wave Trains
,”
Phys. Lett. A
0375-9601,
275
, pp.
386
393
.
19.
Andonowati
,
A.
, and
van Groesen
,
E.
, “
Maximal Temporal Amplitude (MTA) as a New Concept for Deterministic Wave Generation
,” Rogue Waves 2004, SeaTechWeek, Le Quartz, Brest, France.
20.
Fedele
,
F.
, and
Arena
,
F.
, 2003, “
On the Statistics of High Non-Linear Random Waves
,”
Proc. of 13th Int. Offshore and Polar Eng. Conference
,
Honolulu, Hawaii
, USA, 25–30 May 2003, Paper No. III-17-22.
21.
Fedele
,
F.
, and
Arena
,
F.
, 2005, “
Weakly Nonlinear Statistics of High Non-Linear Random Waves
,”
Phys. Fluids
1070-6631,
17
(
1
), pp.
026601
.
22.
Karatzas
,
G. P.
, and
Pinder
,
G. F.
, 1996, “
A Cutting Plane Optimization Technique to Solve the Groundwater Quality Management Problems With Non-Convex Feasible Region
,”
Water Resour. Res.
0043-1397,
32
(
5
), pp.
1091
1100
.
23.
Lindgren
,
G.
, 1970, “
Some Properties of a Normal Process Near a Local Maximum
,”
Ann. Math. Stat.
0003-4851,
4
(
6
), pp.
1870
1883
.
24.
Lindgren
,
G.
, 1972, “
Local Maxima of Gaussian Fields
,”
Ark. Mat.
0004-2080,
10
, pp.
195
218
.
25.
Phillips
,
O. M.
,
Gu
,
D.
, and
Donelan
,
M.
, 1993, “
On the Expected Structure of Extreme Waves in a Gaussian Sea, I. Theory and SWADE Buoy Measurements
,”
J. Phys. Oceanogr.
0022-3670,
23
, pp.
992
1000
.
26.
Phillips
,
O. M.
,
Gu
,
D.
, and
Walsh
,
E. J.
, 1993, “
On the Expected Structure of Extreme Waves in a Gaussian Sea, II. SWADE Scanning Radar Altimeter Measurements
,”
J. Phys. Oceanogr.
0022-3670,
23
, pp.
2297
2309
.
27.
Tromans
,
P. S.
,
Anaturk
,
A. R.
, and
Hagemeijer
,
P.
, 1991, “
A New Model for the Kinematics of Large Ocean Waves: Application as a Design Wave
,”
Shell International Research
, Publ. No. 1042.
28.
Longuet-Higgins
,
M. S.
, 1952, “
On the Statistical Distribution of the Heights of Sea Waves
,”
J. Mar. Res.
0022-2402,
11
, pp.
245
266
.
29.
Tayfun
,
M. A.
, 1980, “
Narrow-Band Nonlinear Sea Waves
,”
J. Geophys. Res.
0148-0227,
85
, pp.
1548
1552
.
30.
Arena
,
P.
, and
Fedele
,
F.
, 2002, “
A Family of Narrow-Band Non-Linear Stochastic Processes for the Mechanics of Sea Waves
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
(
1
), pp.
125
137
.
31.
Benjamin
,
T. B.
, and
Feir
,
J. E.
, 1967, “
The Disintegration of Wave Trains on Deep Water. Part 1. Theory
,”
J. Fluid Mech.
0022-1120,
27
, pp.
417
430
.
32.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
, and
Bertone
,
S.
, 2001, “
Freak Waves in Random Oceanic Sea States
,”
Phys. Rev. Lett.
0031-9007,
86
(
25
), pp.
5831
5834
.
33.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
et al.
, 1973, “
Measurements of Wind Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Dtsch. Hydrogr. Z.
0012-0308,
A8
, pp.
1
95
.
34.
Onorato
,
M.
,
Osborne
,
A. R.
,
Serio
,
M.
, and
Fedele
,
R.
, 2003, “
Landau Damping and Coherent Structures in Narrow-Banded 1+1 Deep Water Gravity Waves
,”
Phys. Rev. E
1063-651X,
67
, pp.
046305
.
You do not currently have access to this content.