It has proven difficult to describe the kinematics in irregular waves satisfactorily, in particular for the surface zone in broad-banded waves. A Lagrangian approach offers distinct advantages in this respect, eliminating the need for extrapolation of solutions or “stretching” of coordinates. This paper presents a model of irregular waves based on superposition of linear Lagrangian wave components, using an iterative method to obtain the Eulerian solution. This approach yields theoretically consistent results everywhere in the waves, and comparisons with wave flume measurements show good agreement. Also, the linear Lagrangian model includes wave interactions that would be nonlinear in an Eulerian formulation.

1.
Gudmestad
,
O. T.
, and
Haver
,
S.
,
1993
, “
Uncertainties in Prediction of Wave Kinematics in Irregular Waves
,”
Wave Kinematics and Environmental Forces (Soc. Underwater Technology)
,
29
, pp.
75
99
.
2.
Gudmestad, O. T., 1998, “On the Importance of Understanding Ocean Waves Kinematics for Calculation of Dynamics and Loads on Offshore Structures,” Proc. Ocean Wave Kinematics, Dynamics and Loads on Structures (Zhang, J., ed.), Houston, April 30th–May 1st, ASCE Press, pp. 1–8.
3.
Gjøsund, S. H., 2000, “Kinematics in Regular and Irregular Waves Based on a Lagrangian Formulation,” doctoral thesis, Dept. of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
4.
Gerstner, F. J. v., 1802, ‘Theorie der Wellen,’ Abh. d. k. bohm. Ges. d. Wiss.
5.
Gerstner, F. J. v., 1809, “Theorie der Wellen,” Annalen der Physik, 32.
6.
Miche
,
M.
,
1944
, “
Mouvements ondulatoires de la mer en profondeur constante ou de´croissante form limite de la houle lors de son de´ferlement. Application aux digues marine
,”
Annales des Ponts Chausse´es
,
114
, pp.
25
78
, 131–164, 270–292, 369–406.
7.
Skjelbreia, J. E., Berek, G., Bolen, Z. K., Gudmestad, O. T., Heideman, J. C., Ohmart, R. D., Spidsø, N., and Tørum, A., 1991, “Wave Kinematics in Irregular Waves,” Proc. OMAE 1991, I-A Offshore Technology, pp. 223–228.
8.
Wheeler, J. D., 1970, “Method for Calculating Forces Produced by Irregular Waves,” J. Petr. Tech., March, pp. 359–367.
9.
Moe, G., and Arntsen, O̸. A., 1996, “Particle Velocity Distribution in Surface Waves,” Proc. ICCE 1996, pp. 565–574.
10.
Pierson, W. J. Jr., 1961, “Models of Random Seas Based on the Lagrangian Equations of Motion,” Tech. Rep. prepared for the Office of Naval Research under contract Nonr-285(03), New York Univ., Coll. of Eng. Res. Div., Dept. of Meteorology and Oceanography, April.
11.
Kinsman, B., 1965, Wind Waves; Their Generation and Propagation on the Ocean Surface, Prentice-Hall, pp. 241–248, 253–258.
12.
Lamb, H., 1932, Hydrodynamics, 6th ed., Cambridge University Press, pp. 12–15 (Arts. 13–16), 421–423 (Art. 251).
13.
Kochin, N. E., Kibel, I. A., and Roze, N. V., 1964, Theoretical Hydromechanics, Interscience Publ., pp. 462–470.
14.
Le Me´haute´, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag N.Y., pp. 244–245.
15.
Moe, G., Arntsen, O̸. A., and Gjøsund, S. H., 1998, “Wave Kinematics based on a Lagrangian Formulation,” Proc. Ocean Wave Kinematics, Dynamics and Loads on Structures (Zhang, J., ed.), Houston, April 30th–May 1st, ASCE Press, pp. 56–63.
16.
Pierson, Jr., W. J., 1962, “Perturbation Analysis of the Navier-Stokes Equations in Lagrangian Form with Selected Linear Solutions,” J. Geophys. Res. B, 67, No. 8, July 1962.
17.
Longuet-Higgins
,
M. S.
, and
Stewart
,
R. W.
,
1960
, “
Changes in the Form of Short Gravity Waves on Long Waves and Tidal Currents
,”
J. Fluid Mech.
,
8
, pp.
565
583
.
18.
Longuet-Higgins
,
M. S.
,
1987
, “
The Propagation of Short Surface Waves on Longer Gravity Waves
,”
J. Fluid Mech.
,
177
, pp.
293
306
.
19.
Naciri
,
M.
, and
Mei
,
C. C.
,
1992
, “
Evolution of a Short Surface Wave on a Very Long Surface Wave of Finite Amplitude
,”
J. Fluid Mech.
,
235
, pp.
415
452
.
20.
Ha˚vie, T., 1996, Numeriske Beregninger, Dept. of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
21.
Kincaid, D., and Cheney, W., 1996, Numerical Analysis, 2nd ed., Brooks/Cole Publishing Co.
22.
Stansberg, C. T., and Gudmestad, O. T., 1996, “Non-linear Random Wave Kinematics Models Verified Against Measurements in Steep Waves,” Proc. OMAE 1996.
23.
Trulsen
,
K.
,
Gudmestad
,
O. T.
, and
Velarde
,
M. G.
,
2001
, “
The Nonlinear Schro¨dinger Method for Water Wave Kinematics on Finite Depth
,”
Wave Motion
,
33
, pp.
379
395
.
You do not currently have access to this content.