The Hilbert-Huang transformation (HHT) is a new method for analyzing nonlinear and non-stationary data series. The central idea behind the HHT is the so-called empirical mode decomposition (EMD) that numerically decomposes a time-dependent signal into its own underlying characteristic modes. Applying the Hilbert transformation (HT) to each of these disintegrated intrinsic mode function (IMF) subsequently provides the Hilbert amplitude or energy spectrum—producing more accurate spectra and proposing in all probability entirely new physical insights of nonlinear and nonstationary processes. The present paper describes the application of the HHT concerning the spectral frequency analysis of nonlinear transient water waves.

1.
Titchmarsh, E. C., 1948, Introduction to the theory of Fourier integrals, Oxford University Press, Oxford, UK.
2.
Funke, E. R., and Mansard, E. P. D., 1980, “On the Synthesis of Realistic Sea States,” Proc. 17th Int. Conf. Coastal Eng., Sydney, Australia, pp. 2255–2973.
3.
Gabor
,
D.
,
1946
, “
Theory of Communication
,”
IEEE J. Comm. Eng.
,
93
, pp.
429
457
.
4.
Daubechies, I., 1992, “Ten Lectures on Wavelets,” Soc. f. Ind. & App. Math.
5.
Mallat, S., 1999, A Wavelet Tour of Signal Processing, Academic Press, New York, NY.
6.
Morlet
,
J.
,
Arens
,
G.
, and
Fourgeau
,
I.
,
1982
, “
Wave Propagation and Sampling Theory
,”
J. Geophys.
,
47
, pp.
203
236
.
7.
Liu
,
P. C.
,
2000
, “
Is the Wind Wave Frequency Spectrum Outdated
,”
Ocean Eng.
,
27
, 5, pp.
577
588
.
8.
Liu
,
P. C.
,
2000
, “
Wave Grouping Characteristics in Near-Shore Great Lakes
,”
Ocean Eng.
,
27
, 11, pp.
1221
1230
.
9.
Chien, H., Chuang, L., and Kao, C. C., 1999, “A Study on Mechanisms of Nearshore Rabid Waves,” 2nd German-Chinese J. Sem. on Rec. Dev. in C. Eng., Tainan, China, pp. 469–483.
10.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
903
995
.
11.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S.
,
1999
, “
A New View of Nonlinear Water Waves: The Hilbert Spectrum
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
417
457
.
12.
Schlurmann, T., 2000, “The Empirical Mode Decomposition and the Hilbert Spectra to Analyze Embedded Characteristic Oscillations of Extreme Waves,” Proc. Rogue Waves Workshop, IFREMER, Brest, France, November 29–30.
13.
Bendat, J. S., and Piersol, A. G., 1986, Random Data: Analysis and Measurement Procedures, John Wiley & Sons, Inc., New York, NY.
14.
Ville
,
J.
,
1948
, “
Theorie et Application de la Notion de Signal Analytic
,”
Cables Transm.
,
2a
, pp.
61
74
.
15.
Boashash
,
B.
,
1992
, “
Estimating and Interpreting the Instantaneous Frequency of a Signal—Part I: Fundamentals
,”
Proc. IEEE
,
80, 4
, pp.
520
538
.
16.
Cohen
,
L.
,
Loughlin
,
P.
, and
Vakman
,
D.
,
1999
, “
On an Ambiguity in the Definition of the Amplitude and Phase of a Signal
,”
Signal Process.
,
79
, pp.
301
307
.
17.
Schlurmann, T., Lengricht, J., and Graw, K.-U., 2000, “Spatial Evolution of Laboratory Generated Freak Wave in Deep Water Depth,” 10th ISOPE, Seattle, WA, 3, pp. 54–59.
18.
Scha¨ffer
,
H. A.
,
1996
, “
Second-Order Wavemaker Theory for Irregular Waves
,”
Ocean Eng.
,
23, 1
, pp.
47
88
.
19.
Schlurmann, T., Schimmels, S., and Dose, T., 2000, “Spectral Frequency Analysis of Transient Waves using Wavelet Spectra (Morlet) and Hilbert Spectra (EMD),” 4th Int. Conf. on Hyd. and Eng. (ICHE), Seoul, Korea.
20.
Mori, N., Yasuda, T., and Nakayama, S. I., 2000, “Statistical Properties of Freak Waves Observed in the Sea of Japan,” 10th ISOPE, Seattle WA, 3, pp. 109–115.
21.
Yasuda
,
T.
, and
Mori
,
N.
,
1997
, “
Occurrence properties of giant freak waves in sea area around Japan
,”
J. of Wat., Port, Coast. and Oc. Eng., ASCE
,
123
, 4, pp.
209
213
.
You do not currently have access to this content.