This paper discusses the use of the peaks over threshold method for estimating long return period design values of environmental loads. Attention is focused on the results concerning the type of asymptotic extreme value distribution for use in the extrapolation to required design values obtained by such methods, which in many cases seem to indicate that the Weibull distribution for maxima is the appropriate one. It will be shown by a closer scrutiny of the underlying estimation process that very often such a conclusion cannot in fact be substantiated.

1.
Castillo, E., 1988, “Extreme Value Theory,” Engineering, Academic Press Inc., San Diego, CA.
2.
Davison
A. C.
, and
Smith
R. L.
,
1990
, “
Models of Exceedances Over High Thresholds
,”
Journal of the Royal Statistical Society
, Ser. B, Vol.
52
, pp.
339
442
.
3.
de Haan
L.
,
1990
, “
Fighting the Archenemy with Mathematics
,”
Statistica Neerlandica
, Vol.
44
, pp.
45
68
.
4.
de Haan, L., 1994, “Extreme Value Statistics,” Extreme Value Theory and Applications, Vol. 1, J. Galambos, J. Lechner and E. Simiu, eds., Kluwer Academic Publishers, Dordrecht and Bosten.
5.
Fisher
R. A.
, and
Tippet
L. H. C.
,
1928
, “
Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample
,”
Proceedings, Cambridge Philosophical Society
, Vol.
24
, pp.
180
190
.
6.
Gross, J. L., Heckert, N. A., Lechner, J. A., and Simiu, E., 1994, “Novel Extreme Value Procedures: Application to Extreme Wind Data,” Extreme Value Theory and Applications, Vol. 1, J. Galambos, J. Lechner and E. Simiu, eds., Kluwer Academic Publishers, Dordrecht and Boston.
7.
Gross, J. L., Heckert, N. A., Lechner, J. A., and Simiu, E., 1995, “A Study of Optimal Extreme Wind Estimation Procedures,” Proceedings, Ninth International Conference on Wind Engineering, New Delhi, India.
8.
Hosking
J. R. M.
, and
Wallis
J. R.
,
1987
, “
Parameter and Quantile Estimation for the Generalized Pareto Distribution
,”
Technometrics
, Vol.
29
, pp.
339
349
.
9.
Leadbetter, R. M., Lindgren, G., and Rootzen, H., 1983, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York.
10.
Naess, A., Storli, H., and Storm, L. E., 1996, “Statistical Prediction of Long Return Period Design Values,” Proceedings, 15th International Conference on Offshore Mechanics and Arctic Engineering, Florence, Italy, June, ASME, Vol. 2, pp. 17–22.
11.
Naess
A.
,
1998
, “
Estimation of Long Return Period Design Values for Wind Speeds
,”
Journal of Engineering Mechanics
, ASCE, Vol.
124
, No.
3
, pp.
252
259
.
12.
Pickands
J.
,
1975
, “
Statistical Interference Using Order Statistics
,”
Annals of Statistics
, Vol.
3
, pp.
119
131
.
13.
Simiu
E.
,
Filliben
J. J.
, and
Bie´try
J.
,
1978
, “
Sampling Errors in the Estimation of Extreme Wind Speeds
,”
Journal of the Structural Division
, ASCE, Vol.
104
, pp.
491
501
.
14.
Simiu
E.
, and
Heckert
N. A.
,
1996
, “
Extreme Wind Distribution Tails: A ‘Peaks Over Threshold’ Approach
,”
Journal of Structural Engineering
, ASCE, Vol.
122
, No.
5
, pp.
539
547
.
15.
Smith, R. L., 1989, “Extreme Value Theory,” Handbook of Applicable Mathematics, Supplement, eds., W. Ledermann, E. Lloyd, S. Vajda, and C. Alexander, John Wiley and Sons, New York, NY, pp. 437–472.
This content is only available via PDF.
You do not currently have access to this content.