A large-scale experimental study to investigate the dynamic response of a single flexible cylinder in waves is presented. The cylinder was designed to exhibit the dynamic characteristics of a TLP riser or tendon in approximately 1000 m of water. Instrumentation provided detailed information on the inline and transverse curvature along the length of the cylinder. Wave loading mechanisms and the resulting response were investigated and compared with previous studies of rigid cylinders in oscillating flow. It was found that the complicated multifrequency response at large Keulegan-Carpenter numbers could be explained by introducing the depth dependence of the Keulegan-Carpenter number. The predicted inline response was shown to be reasonable for the wave frequency component of the measured inline response. Similarities between the measured transverse response and the high-frequency inline response were also shown. Probability density functions of the measured curvature were non-Gaussian, leading to significantly higher probabilities of curvature than would be predicted based on assuming a Gaussian process.

1.
Blevins, R. D., 1990, Flow-Induced Vibration, Van Nostrand Reinhold, New York, NY.
2.
Borthwick
A. G. L.
, and
Herbert
D. M.
,
1988
, “
Loading and Response of a Small Diameter Flexibly Mounted Cylinder in Waves
,”
Journal of Fluids and Structures
, Vol.
2
, pp.
479
501
.
3.
Duggal, A. S., 1992, “Wave Interaction With a Pair of Flexible Cylinders,” Ph.D. dissertation, Texas A & M University, College Station, TX.
4.
Duggal, A. S., and Niedzwecki, J. M., 1995, “Estimation of Flexible Cylinder Displacements in Wave Basin Experiments,” Experimental Mechanics, in press.
5.
Duggal
A. S.
, and
Niedzwecki
J. M.
,
1994
, “
Probabilistic Collision Model for a Pair of Flexible Cylinders
,”
Applied Ocean Research
, Vol.
16
, No.
3
, pp.
165
176
.
6.
Gardner, T. N., and Kotch, M. A., 1976, “Dynamic Analysis of Risers and Caissons by the Finite Element Method,” Proceedings, 10th Offshore Technology Conference, OTC 2651, Houston, TX, pp. 405–420.
7.
Gere, J. M., and Timoshenko, S. P., 1984, Mechanics of Materials, Wadsworth Inc., Belmont, CA.
8.
Le Me´haute´, B., 1965, “On Froude-Cauchy Similitude,” Proceedings, ASCE Conference on Coastal Engineering, Santa Barbara, CA, pp. 327–346.
9.
Miles, M. D., 1990, “The GEDAP Data Analysis Software Package,” Division of Mechanical Engineering Technical Report TR-HY-030, National Research Council, Canada.
10.
Morison
J. R.
,
O’Brien
M. P.
,
Johnson
J. W.
, and
Schaaf
S. A.
,
1950
, “
The Forces Exerted by Surface Waves on Piles
,”
Petroleum Trans.
, AIME, Vol.
189
, pp.
149
157
.
11.
Newton, H. J., 1988, Timeslab: A Time Series Analysis Laboratory, Wadsworth and Brooks/Cole Publishing Company, Pacific Grove, CA.
12.
Paulling, J. R., 1979, “Frequency Domain Analysis of OTEC CW Pipe,” Proceedings 11th Offshore Technology Conference, OTC 3543, Houston, TX, pp. 1641–1651.
13.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1992, Numerical Recipes: The Art of Scientific Computing, 2nd Edition, Cambridge University Press, New York, NY.
14.
Sarpkaya
T.
,
1977
, “
Inline and Transverse Forces on Cylinders in Oscillatory Flow at High Reynolds Numbers
,”
Journal of Ship Research
, Vol.
21
, pp.
200
216
.
15.
Sarpkaya, T., and Isaacson, M., 1981, Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold Company, New York, NY.
16.
Winterstein
S. R.
,
1988
, “
Nonlinear Vibration Models for Extremes and Fatigue
,”
Journal of Engineering Mechanics
, Vol.
114
, No.
10
, pp.
1772
1790
.
This content is only available via PDF.
You do not currently have access to this content.