A tension leg platform (TLP) tendon system experiences oscillatory tensile stresses, and therefore is vulnerable to fatigue and fracture. Because design factors have significant uncertainty, a reliability analysis to quantify structural performance is appropriate. A maintenance program of periodic inspection and repair shows promise for improving system reliability and enhancing structural integrity. The performance of a TLP tendon system was simulated in order to study the relationship of design factors to system reliability. Effects on system reliability and maintenance performance (repair and replacement rates) can be studied as a function of (a) number of joints, J; (b) number of members, M; (c) inspection frequency; (d) inspection sensitivity as defined by the POD (probability of detection) curve; (e) ultimate strength; (f) repair policy; etc. The performance of an initially damaged or flawed tendon system is investigated. The reliability of a system that uses pressurized tendons to detect through-thickness cracks is studied, as is the vulnerability of the tendon system before replacement of broken tendons.

This content is only available via PDF.
You do not currently have access to this content.