The problem of a body oscillating in a viscous fluid with a free surface is examined. The Navier-Stokes equations and boundary conditions are linearized using the assumption of small body-motion to wavelength ratio. Generation and diffusion of vorticity, but not its convection, are accounted for. Rotational and irrotational Green functions for a divergent and a vorticity source are presented, with the effects of viscosity represented by a frequency Reynolds number Rσ = g2/νσ3. Numerical solutions for a pair of coupled integral equations are obtained for flows about a submerged cylinder, circular or square. Viscosity-modified added-mass and damping coefficients are developed as functions of frequency. It is found that as Rσ approaches infinity, inviscid-fluid results can be recovered. However, viscous effects are important in the low-frequency range, particularly when Rσ is smaller than O(104).

This content is only available via PDF.
You do not currently have access to this content.