Abstract

This paper describes applications of an extension to a recently developed calculation method for vortex-induced response of risers and tethers. The vortex-induced vibration response for the excited modes is generated using a semi-empirical formulation which is applied within a time domain calculation. This makes it possible to take account of the variation of flow properties along the riser length, as well as in time. The calculation method has been verified by comparison with model test data for vortex-induced response to surface vessel motions in still water. This paper presents applications of the technique for vortex shedding due to the combined action of current, surface vessel motions and waves. The mathematics of the extended prediction technique is described and results are illustrated by presenting typical vortex-induced responses for single-tube risers. The results of the prediction method are used to highlight the relative magnitudes and nature of vortex-induced response excited by currents, surface vessel motions and waves.

This content is only available via PDF.
You do not currently have access to this content.