Abstract

The heat transfer during pool boiling incorporates a higher rate of heat dissipation capability at low-temperature differences. This technique is widely used in the nuclear industry for thermal management. In this study, the effect of tube diameter and length on critical heat flux (CHat atmospheric conditions in saturated water during pool boiling) is analyzed. The tubes of SS 304 are kept in the vertical orientation. The diameter of the tubes ranges from 1.2 mm to 9 mm. The experiments are performed with tubes having lengths varying from 50 mm to 1000 mm. It has been noted that tubes of smaller diameter show a greater magnitude of critical heat flux (CHF) for the given length. Compared to other tubes, the magnitude of CHF for a 1.2 mm diameter is higher. For a given diameter, a longer tube is found to have lower CHF than the ones having lesser length. The variation in the CHF magnitude is negligible for tubes with a diameter of more than 2.5 mm beyond a length of 200 mm. The location of occurrence of CHF is near the bottom end of the vertical tube. The study illustrates the behavior of bubble nucleation for various tube dimensions and heat fluxes. The inception and detachment of bubbles for different tubes are analyzed. The pool boiling regime is categorized and studied basing the behavior of the incepted and departed bubble while maintaining uniform heat flux. A mathematical relation that empirically accounts for the effect of tube dimensions , i.e., length and diameter on pool boiling CHF is proposed. The experimental CHF data obtained during pool boiling are tabulated toward contributing to the CHF databank.

References

1.
Aquaro
,
D.
, and
Pieve
,
M.
,
2007
, “
High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
389
400
.10.1016/j.applthermaleng.2006.07.030
2.
Bartel
,
N.
,
Chen
,
M.
,
Utgikar
,
V. P.
,
Sun
,
X.
,
Kim
,
I.-H.
,
Christensen
,
R.
, and
Sabharwall
,
P.
,
2015
, “
Comparative Analysis of Compact Heat Exchangers for Application as the Intermediate Heat Exchanger for Advanced Nuclear Reactors
,”
Ann. Nucl. Energy
,
81
, pp.
143
149
.10.1016/j.anucene.2015.03.029
3.
Oh
,
C. H.
,
Kim
,
E. S.
, and
Patterson
,
M.
,
2009
, “
Design Option of Heat Exchanger for the Next Generation Nuclear Plant
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032903
.10.1115/1.3126780
4.
Wang
,
Z.
,
Deng
,
J.
,
Qiu
,
Z.
,
Wang
,
X.
,
Zhong
,
L.
, and
Zhong
,
M.
,
2021
, “
Experimental Investigation of the Transient Pool Boiling Heat Transfer on the Quenching of Vertical Rodlet in Water
,”
ASME J. Nucl. Rad Sci.
,
8
(
2
), p.
021403
.10.1115/1.4051875
5.
Prasad
,
S. V.
, and
Nayak
,
A. K.
,
2020
, “
Experimental Evaluation of Critical Heat Flux in Downward-Facing Boiling on SS304 L Flat Plate Relevant to in-Calandria Retention in PHWRs
,”
ASME J. Nucl. Rad. Sci.
,
6
(
3
), p.
031301
.10.1115/1.4044410
6.
Golobic
,
I.
, and
Bergles
,
A. E.
,
1997
, “
Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
43
51
.10.1016/S0894-1777(96)00170-7
7.
Raghupathi
,
P. A.
, and
Kandlikar
,
S. G.
,
2017
, “
Effect of Thermophysical Properties of the Heater Substrate on Critical Heat Flux in Pool Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
11
), p. 111502.10.1115/1.4036653
8.
Park
,
H. K.
, and
Chung
,
B. J.
,
2022
, “
Comparative Analysis of Bubble Behavior Between Boiling and Hydrogen Evolving System at Horizontal Cylinders
,”
Heat Mass Transfer
,
58
(
5
), pp.
779
789
.10.1007/s00231-021-03140-8
9.
Lienhard
,
J. H.
, and
Watanabe
,
K.
,
1966
, “
On Correlating the Peak and Minimum Boiling Heat Fluxes With Pressure and Heater Configuration
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
88
(
1
), pp.
94
99
.10.1115/1.3691491
10.
Kang
,
M.-G.
,
2003
, “
Effects of Tube Inclination on Pool Boiling Heat Transfer
,”
Nucl. Eng. Des.
,
220
(
1
), pp.
67
81
.10.1016/S0029-5493(02)00322-9
11.
Zhao
,
J.-F.
,
Lu
,
Y.-H.
,
Du
,
W.-F.
, and
Li
,
Z.-D.
,
2015
, “
Revisit on the Scaling of the Critical Heat Flux on Cylinders
,”
Interfacial Phenomena and Heat Transfer
, 3(1), pp.
69
83
.10.1615/InterfacPhenomHeatTransfer.2015013201
12.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
, “
Hydrodynamic Prediction of Peak Pool Boiling Heat Fluxes From Finite Bodies
,”
ASME J Heat Transfer
,
95
(
2
), pp.
152
158
.10.1115/1.3450013
13.
Pattanayak
,
B.
,
Kumar Gupta
,
A.
, and
Kothadia
,
H. B.
,
2022
, “
Bubble Behaviour and Critical Heat Flux on Circular Tubes During Pool Boiling Process
,”
Nucl. Eng. Des.
,
391
, p.
111741
.10.1016/j.nucengdes.2022.111741
14.
Jun
,
S.
,
Kim
,
J.
,
You
,
S. M.
, and
Kim
,
H. Y.
, Dec.
2016
, “
Effect of Heater Orientation on Pool Boiling Heat Transfer From Sintered Copper Microporous Coating in Saturated Water
,”
Int. J. Heat Mass Transfer
,
103
, pp.
277
284
.10.1016/j.ijheatmasstransfer.2016.07.030
15.
Howard
,
A. H.
, and
Mudawar
,
I.
,
1999
, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modelling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1665
1688
.10.1016/S0017-9310(98)00233-6
16.
Liao
,
L.
,
Bao
,
R.
, and
Liu
,
Z.
,
2008
, “
Compositive Effects of Orientation and Contact Angle on Critical Heat Flux in Pool Boiling of Water
,”
Heat Mass Transfer
,
44
(
12
), pp.
1447
1453
.10.1007/s00231-008-0384-6
17.
Priarone
,
A.
,
2005
, “
Effect of Surface Orientation on Nucleate Boiling and Critical Heat Flux of Dielectric Fluids
,”
Int. J. Thermal Sci.
,
44
(
9
), pp.
822
831
.10.1016/j.ijthermalsci.2005.02.014
18.
El-Genk
,
M. S.
, and
Guo
,
Z.
,
1993
, “
Transient Boiling From Inclined and Downward-Facing Surfaces in a Saturated Pool
,”
Int. J. Refrigeration
,
16
(
6
), pp.
414
422
.10.1016/0140-7007(93)90058-G
19.
Shah
,
M. M.
,
1996
, “
Survey of Critical Heat Flux Data for Pool Boiling of Liquid Metals and New Correlations
,”
Heat Transfer Eng.
,
17
(
2
), pp.
54
66
.10.1080/01457639608939873
20.
Pattanayak
,
B.
, and
Kothadia
,
H.
,
2022
, “
Experimental Study of Critical Heat Flux During Pool Boiling on Mini Tubes: Effect of Subcooling, Orientation, and Dimensions
,”
Heat Transfer Eng.
,
43
(
11
), pp.
896
921
.10.1080/01457632.2021.1919971
21.
Wang
,
C.
,
Li
,
P.
,
Zhang
,
D.
,
Tian
,
W.
,
Qiu
,
S.
,
Su
,
G. H.
, and
Deng
,
J.
,
2022
, “
Experimental Study on the Influence of Heating Surface Inclination Angle on Heat Transfer and CHF Performance for Pool Boiling
,”
Nucl. Eng. Technol.
,
54
(
1
), pp.
61
71
.10.1016/j.net.2021.07.033
22.
Inbaoli
,
A.
,
Sujith Kumar
,
C. S.
, and
Jayaraj
,
S.
,
2022
, “
A Review on Techniques to Alter the Bubble Dynamics in Pool Boiling
,”
Appl. Therm. Eng.
,
214
, p.
118805
.10.1016/j.applthermaleng.2022.118805
23.
Mohanty
,
R. L.
, and
Das
,
M. K.
,
2017
, “
A Critical Review on Bubble Dynamics Parameters Influencing Boiling Heat Transfer
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
466
494
.10.1016/j.rser.2017.04.092
24.
Kim
,
J.
,
2009
, “
Review of Nucleate Pool Boiling Bubble Heat Transfer Mechanisms
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1067
1076
.10.1016/j.ijmultiphaseflow.2009.07.008
25.
Smith
,
J.
,
Johnson
,
R.
, and
Anderson
,
L.
,
2015
, “
Effect of Pressure on Critical Heat Flux During Pool Boiling
,”
Int. J. Heat Mass Transfer
,
87
, pp.
123
135
.
26.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
1
), pp.
75
83
.10.1115/1.1527890
27.
Mudawar
,
I.
, and
Anderson
,
T. M.
,
1990
, “
Parametric Investigation Into the Effect of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips
,”
ASME J. Electron. Pack
,
112
(
4
), pp.
375
382
.10.1115/1.2904392
28.
Kazakova
,
E. A.
,
1951
, “
Maximum Heat Transfer to Boiling Water at High Pressures
,”
Eng. Dig.
,
12
(
3
), pp.
81
85
.
29.
Chen
,
Y.
, and
Chang
,
J.
,
2016
, “
Experimental Investigation of Pressure Effects on Critical Heat Flux in Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
147
156
.
30.
Memmott
,
M. J.
, and
Manera
,
A.
,
2015
, “
The Use of Flashing Drums and Microchannel Heat Exchangers to Generate Steam in Large Integral Light Water Reactors
,”
Nucl. Technol.
,
191
(
3
), pp.
199
212
.10.13182/NT14-103
31.
Fan
,
Y.
, and
Luo
,
L.
,
2008
, “
Recent Applications of Advances in Microchannel Heat Exchangers and Multi-Scale Design Optimization
,”
Heat Transfer Eng.
,
29
(
5
), pp.
461
474
.10.1080/01457630701850968
32.
Hardik
,
B. K.
, and
Prabhu
,
S. V.
,
2017
, “
Critical Heat Flux in Helical Coils at Low Pressure
,”
Appl. Therm. Eng.
,
112
, pp.
1223
1239
.10.1016/j.applthermaleng.2016.10.114
33.
Santini
,
L.
,
Cioncolini
,
A.
,
Lombardi
,
C.
, and
Ricotti
,
M.
,
2014
, “
Dryout Occurrence in a Helically Coiled Steam Generator for Nuclear Power Application
,”
EPJ Web Conf.
,
67
, p.
02102
.10.1051/epjconf/20146702102
34.
Može
,
M.
,
Zupančič
,
M.
, and
Golobič
,
I.
,
2020
, “
Investigation of the Scatter in Reported Pool Boiling CHF Measurements Including Analysis of Heat Flux and Measurement Uncertainty Evaluation Methodology
,”
Appl. Therm. Eng.
,
169
, p.
114938
.10.1016/j.applthermaleng.2020.114938
35.
Inoue
,
T.
,
Kawae
,
N.
, and
Monde
,
M.
, April
1998
, “
Effect of Subcooling on Critical Heat Flux During Pool Boiling on a Horizontal Heated Wire
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
481
488
.10.1007/s002310050219
36.
Pattanayak
,
B.
,
Gupta
,
A. K.
, and
Kothadia
,
H. B.
,
2022
, “
Critical Heat Flux and Bubble Behaviour Study on Differently Oriented Flat Plates During Pool Boiling
,”
Nucl. Eng. Des.
,
400
, p.
112079
.10.1016/j.nucengdes.2022.112079
37.
Pattanayak
,
B.
,
Deswal
,
H.
,
Saxena
,
V.
, and
Kothadia
,
H.
,
2021
, “
Effect of Strip Orientations and Geometry on the Critical Heat Flux in Pool Boiling
,”
Advances in Fluid and Thermal Engineering. Lecture Notes in Mechanical Engineering
,
Sikarwar
,
B. S.
,
Sundén
,
B.
,
Wang
,
Q.
, eds.,
Springer
, Berlin.
38.
Zuber
,
N.
,
Tribus
,
M.
, and
Westwater
,
J. W.
,
1961
, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids
,”
International Developments in Heat Transfer: Proceedings of the 1961–62 International Heat Transfer Conference
,
Boulder, CO
, pp.
230
236
.
39.
Rao
,
K. M.
, and
Andrews
,
D. G.
, Oct.
1976
, “
Effect of Heater Diameter on the Critical Heat Flux From Horizontal Cylinders in Pool Boiling
,”
Can. J. Chem. Eng.
,
54
(
5
), pp.
403
412
.10.1002/cjce.5450540505
40.
Fukuda
,
K.
, and
Sakurai
,
A.
,
2002
, “
Effects of Diameters and Surface Conditions of Horizontal Test Cylinders on Subcooled Pool Boiling CHFs With Two Mechanisms Depending on Subcooling and Pressure
,”
12th International Heat Transfer Conference
,
Grenoble, France
, Aug. 18–23.10.1615/IHTC12.4530
41.
Kutateladze
,
S. S.
,
1979
, “
Boiling and Bubbling Heat Transfer Under Free Convection of Liquid
,”
Int. J. Hear Mass Tranfer
,
22
(
2
), pp.
281
299
.10.1016/0017-9310(79)90152-2
42.
Rohsenow
,
W. M.
, and
Griffith
,
P.
,
1955
, “
Correlation of Maximum Heat Flux Data for Boiling of Saturated Liquids
,”
Massachusetts Institute of Technology, Division of Industrial Cooperation
,
Cambridge, UK
.
43.
Shiotsu
,
M.
,
Hata
,
K.
, and
Sakurai
,
A.
,
1989
, “
Effects of Diameter and System Pressure on Critical Heat Flux for Horizontal Cylinder in Saturated Liquid He
,”
Cryogenics
,
29
(
6
), pp.
593
596
.10.1016/0011-2275(89)90114-8
44.
Haramura
,
X.
, and
Katto
,
Y.
,
1983
, “
A New Hydrodynamic Model of Critical Heat Flux Applicable Widely to Both Pool and Forced Convection Boiling on Submegded Bodies in Saturated Liquids
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
389
399
.10.1016/0017-9310(83)90043-1
45.
Sun
,
K.-H.
, and
Lienhard
,
J. H.
,
1970
, “
The Peak Pool Boiling Heat Flux on Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
13
(
9
), pp.
1425
1439
. Pergamon Press.10.1016/0017-9310(70)90178-X
46.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.10.1016/S0017-9310(03)00215-1
47.
Yagov
,
V.
, Jun.
2014
, “
Is a Crisis in Pool Boiling Actually a Hydrodynamic Phenomenon?
,”
Int. J. Heat Mass Transfer
,
73
, pp.
265
273
.10.1016/j.ijheatmasstransfer.2014.01.076
You do not currently have access to this content.