Abstract

Betavoltaics are direct conversion energy devices that are ideal for low power and long-lasting, uninterruptable applications. Betavoltaics operate similarly to photovoltaics where a radio isotope irradiates beta particles into a semiconductor p-n junction that converts the kinetic energy into electrical energy. Betavoltaics are limited by their power output from the radio isotope. However, the source power density can be increased by the selection of solid-state substrates. While tritium absorbing substrates can be simulated to estimate tritium absorption levels and surface emission energies, their viability has to be physically evaluated. A state-of-the-art hydrogen loading system developed by our research group was used to evaluate different film types to understand how they perform during the hydrogen/tritium loading process. The hydrogen loading system utilizes the Sievert technique, where the temperature and volume is constant and pressure drop of the system is used to determine hydrogen uptake of a film substrate. The hydrogen loading system procedure was verified using 250 nm thick palladium films at three loading temperatures. Results clearly show uptake of hydrogen by the thin palladium films accurate to the ideal stoichiometric ratio of one hydrogen atom to host palladium atom.

References

1.
Olsen
,
L. C.
,
Cabauy
,
P.
, and
Elkind
,
B. J.
,
2012
, “
Betavoltaic Power Sources
,”
Phys. Today
,
65
(
12
), pp.
35
38
.10.1063/PT.3.1820
2.
Adams
,
T.
,
Revankar
,
S.
,
Cabauy
,
P.
,
Elkind
,
B.
, and
Cheu
,
D.
,
2016
, “
Betavoltaic Performance Under Extreme Temperatures
,”
Nucl. Technol. Radiat. Prot.
,
31
, pp.
356
360
.10.2298/NTRP1604356A
3.
City Labs Inc
.,
2017
, P200 Series Extended-Life Models P200 Series Performance Characteristics Betavoltaic Power Decay, accessed Mar. 6, 2023, https://citylabs.net/products/
4.
Revankar
,
S. T.
, and
Adams
,
T. E.
,
2014
, “
Advances in Betavoltaic Power Sources
,”
J. Energy Power Sources
,
1
(
6
), pp.
321
329
.
5.
Ionascut-Nedelcescu
,
A.
,
Carlone
,
C.
,
Houdayer
,
A.
,
von Bardeleben
,
H.
,
Cantin
,
J.-L.
, and
Raymond
,
S.
,
2002
, “
Radiation Hardness of Gallium Nitride
,”
IEEE Trans. Nucl. Sci.
,
49
(
6
), pp.
2733
2738
.10.1109/TNS.2002.805363
6.
Baum
,
E. M.
,
2010
, “
Knolls Atomic Power Laboratory, and Bechtel Marine Propulsion Corporation
,” Nuclides and Isotopes: Chart of the Nuclides,
Kapl
,
Schenectady, NY
.
7.
Broderick
,
K.
,
Lusk
,
R.
,
Hinderer
,
J.
,
Griswold
,
J.
,
Boll
,
R.
,
Garland
,
M.
,
Heilbronn
,
L.
, and
Mirzadeh
,
S.
,
2019
, “
Reactor Production of Promethium-147
,”
Appl. Radiat. Isotopes
,
144
, pp.
54
63
.10.1016/j.apradiso.2018.10.025
8.
Williams
,
D. F.
,
O'Kelley
,
G. D.
,
Knauer
,
J. B.
,
Porter
,
C. E.
, and
Wiggins
,
J. T.
,
1993
, “
Recovery and Purification of Nickel-63 From Hfir-Irradiated Targets
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-12399.
9.
Heung
,
L.
,
1994
, “
Titanium for Long-Term Tritium Storage
,”
Westinghouse Savannah River Co
.,
Aiken, SC
, Report.
10.
Liu
,
B.
,
Chen
,
K. P.
,
Kherani
,
N. P.
,
Zukotynski
,
S.
, and
Antoniazzi
,
A. B.
,
2008
, “
Betavoltaics Using Scandium Tritide and Contact Potential Difference
,”
Appl. Phys. Lett.
,
92
(
8
), p.
083511
.10.1063/1.2887879
11.
Adams
,
T. E.
,
2014
, “
Hydrogen Loading System Development And Evaluation Of Tritiated Substrates To Optimize Performance In Tritium Based Betavoltaics
,” Dissertation,
Purdue University
, West Lafayette, IN.
12.
Mencer
,
D. E.
,
Hess
,
T. R.
,
Mebrahtu
,
T.
,
Patscheider
,
J.
, and
Naugle
,
D. G.
,
1990
, “
A Novel Use for Gold Diffusion Barriers in Studies of Oxygen Absorption in Titanium Films
,”
J. Chem. Soc., Chem. Commun.
, (
22
), pp.
1602
1603
.10.1039/C39900001602
13.
Manchester
,
F. D.
,
San-Martin
,
A.
, and
Pitre
,
J. M.
,
1994
, “
The H-Pd (Hydrogen-Palladium) System
,”
J. Phase Equilibria
,
15
(
1
), pp.
62
83
.10.1007/BF02667685
14.
Arrhenius
,
S.
,
1889
, “
Über Die Reaktionsgeschwindigkeit Bei Der Inversion Von Rohrzucker Durch Säuren
,”
Z. Für Phys. Chem.
,
4U
(
1
), pp.
226
248
.10.1515/zpch-1889-0416
15.
Blackford
,
B.
,
Arnold
,
C.
,
Mulhern
,
P.
, and
Jericho
,
M.
,
1994
, “
A Scanning Tunneling Microscope Study of a Palladium Sphere in Hydrogen Gas: Expansion and Surface Topology
,”
J. Appl. Phys.
,
76
(
7
), pp.
4054
4060
.10.1063/1.358449
16.
Sicking
,
G.
,
1984
, “
Isotope Effects in Metal-Hydrogen Systems
,”
J. Less Common Met.
,
101
(
C
), pp.
169
190
. 10.1016/0022-5088(84)90093-6
17.
Lässer
,
R.
,
1985
, “
Isotope Dependence of Phase Boundaries in the PdH, PdD, and PdT Systems
,”
J. Phys. Chem. Solids
,
46
(
1
), pp.
33
37
.10.1016/0022-3697(85)90192-1
You do not currently have access to this content.