Abstract

As a candidate material for metallic fuel, U-Mo metal fuel pellets are the most promising. U-Mo and U-Mo-Nb alloy pellets with a certain porosity were successfully prepared by the process of hydrogenation/dehydrogenation—compression molding—argon liquid-phase sintering. In order to study the effect of Nb addition on γ phase uranium alloy fuel pellets, microstructure and thermophysical properties of the samples were investigated using scanning electron microscope (SEM), in situ synchrotron X-ray diffraction (XRD), and differential scanning calorimeter (DSC) measurements. Results showed that with the increase of Nb content in the pellets from the nonadd to micro-adding, Nb can facilitate the diffusion of Mo into the U matrix, resulting in the formation of a metastable γ-U phase. Meanwhile, during the same liquid phase sintering process of U-Mo fuel pellets, with the increase of Nb content, the number of secondary phases in U-Mo fuel pellets gradually decreased, while the size and number of voids of the secondary phases decreased. The specific heat capacity and thermal diffusivity of porous γ phase uranium alloys fuel pellets with different density were measured and thermal conductivity from 100 °C to 600 °C were calculated according to the experiment results. It is suggested that the thermal conductivity will increase with the density of pellets increasing.

References

1.
Mo
,
H. J.
,
Zhang
,
W.
,
Wu
,
L.
,
Luo
,
H.
,
He
,
W.
,
Pan
,
R. J.
,
Zhen
,
W.
,
Wu
,
X. Y.
, and
Wen
,
B.
,
2020
, “
The Progress of Accident-Tolerant UO2-Based Composite Fuel Pellets
,”
Nucl. Power Eng.
,
41
(
2
), pp.
36
39
.10.13832/j.jnpe.2020.02.0036
2.
Chen
,
S. L.
,
He
,
X. J.
, and
Yuan
,
C. X.
,
2020
, “
Recent Studies on Potential Accident-Tolerant Fuel-Cladding Systems in Light Water Reactors
,”
Nucl. Sci. Technol.
,
31
(
3
), pp.
31
32
.10.1007/s41365-020-0741-9
3.
Kim
,
Y. S.
, and
Hofman
,
G. L.
,
2011
, “
Fission Product Induced Swelling of U-Mo Alloy Fuel
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
291
301
.10.1016/j.jnucmat.2011.08.018
4.
Snelgrove
,
J. L.
,
Hofman
,
G. L.
,
Trybus
,
C. L.
, and
Wiencek
,
T. C.
,
1996
, “
Development of Very-High-Density Fuels by the RERTR Program
,”
The 19th International Meeting on Reduced Enrichment for Research and Test Reactors
, Seoul, South Korea, Oct. 7–10, pp.
119
126
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/037/28037665.pdf
5.
Hofman
,
G. L.
,
Meyer
,
M. K.
, and
Ray
,
A. E.
,
1998
, “
Design of High-Density Gamma-Phase Uranium Alloys for LEU Dispersion Fuel Applications
,”
The 1998 International Reduced Enrichment for Test Reactor Conference
, Sao Paulo, Brazil, Oct. 18–23, p.
97494
.https://www.researchgate.net/publication/269112902_DESIGN_OF_HIGH_DENSITY_GAMMAPHASE_URANIUM_ALLOYS_FOR_LEU_DISPERSION_FUEL_APPLICATIONS
6.
Yakel
,
H. L.
,
1969
, “
Crystal Structures of Transition Phases Formed in U/16.60 at% Nb/5.64 at% Zr Alloys
,”
J. Nucl. Mater.
,
33
(
3
), pp.
286
295
.10.1016/0022-3115(69)90022-1
7.
Fink
,
J. K.
,
Chasanov
,
M. G.
, and
Leibowitz
,
L.
,
1981
, “
Thermophysical Properties of Uranium Dioxide
,”
J. Nucl. Mater.
,
102
(
1–2
), pp.
17
25
.10.1016/0022-3115(81)90541-9
8.
Meyer
,
M. K.
,
Hofman
,
G. L.
,
Hayes
,
S. L.
,
Clark
,
C. R.
,
Wiencek
,
T. C.
,
Snelgrove
,
J. L.
,
Strain
,
R. V.
, and
Kim
,
K.-H.
,
2002
, “
Low-Temperature Irradiation Behavior of Uranium - Molybdenum Alloy Dispersion Fuel
,”
J. Nucl. Mater.
,
304
(
2–3
), pp.
221
236
.10.1016/S0022-3115(02)00850-4
9.
Liu
,
M.
,
Shi
,
Y. P.
,
Liu
,
M. F.
,
Li
,
D. Z.
,
Mo
,
W. L.
,
Fa
,
T.
,
Bai
,
B.
,
Wang
,
X. L.
, and
Chen
,
X. Q.
,
2020
, “
First-Principles Comprehensive Study of Electronic and Mechanical Properties of Novel Uranium Hydrides at Different Pressures
,”
Prog. Nat. Sci.
,
30
(
2
), pp.
251
259
.10.1016/j.pnsc.2020.01.019
10.
Bajaj
,
S.
,
Landa
,
A.
,
Söderlind
,
P.
,
Turchi
,
P. E.
, and
Arróyave
,
R.
,
2011
, “
The U - Ti System: Strengths and Weaknesses of the CALPHAD Method
,”
J. Nucl. Mater.
,
419
(
1–3
), pp.
177
185
.10.1016/j.jnucmat.2011.08.050
11.
Burkes
,
D. E.
,
Papesch
,
C. A.
,
Maddison
,
A. P.
,
Hartmann
,
T.
, and
Rice
,
F. J.
,
2010
, “
Thermo-Physical Properties of DU-10 wt.% Mo Alloys
,”
J. Nucl. Mater.
,
403
(
1–3
), pp.
160
166
.10.1016/j.jnucmat.2010.06.018
12.
Smirnova
,
D. E.
,
Kuksin
,
A. Y.
,
Starikov
,
S. V.
,
Stegailov
,
V. V.
,
Insepov
,
Z.
,
Rest
,
J.
, and
Yacout
,
A. M.
,
2013
, “
A Ternary EAM Interatomic Potential for U-Mo Alloys With Xenon
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
3
), p.
035011
.10.1088/0965-0393/21/3/035011
13.
Kim
,
K. H.
,
Lee
,
D. B.
,
Kim
,
C. K.
,
Hofman
,
G.
, and
Paik
,
K. W.
,
1997
, “
Characterization of U-2 wt% Mo and U-10 wt% Mo Alloy Powders Prepared by Centrifugal Atomization
,”
J. Nucl. Mater.
,
245
(
2–3
), pp.
179
184
.10.1016/S0022-3115(97)00011-1
14.
Clarke
,
A. J.
,
Clarke
,
K. D.
,
McCabe
,
R. J.
,
Necker
,
C. T.
,
Papin
,
P. A.
,
Field
,
R. D.
,
Kelly
,
A. M.
,
Tucker
,
T. J.
,
Forsyth
,
R. T.
,
Dickerson
,
P. O.
,
Foley
,
J. C.
,
Swenson
,
H.
,
Aikin
,
R. M.
, and
Dombrowski
,
D. E.
,
2015
, “
Microstructural Evolution of a Uranium-10 wt.% Molybdenum Alloy for Nuclear Reactor Fuels
,”
J. Nucl. Mater.
,
465
, pp.
784
792
.10.1016/j.jnucmat.2015.07.004
15.
Burkes
,
D. E.
,
Hartmann
,
T.
,
Prabhakaran
,
R.
, and
Jue
,
J.-F.
,
2009
, “
Microstructural Characteristics of DU-x Mo Alloys With x = 7 to 12 Weight Percent
,”
J. Alloys Compd.
,
479
(
1–2
), pp.
140
147
.10.1016/j.jallcom.2008.12.063
16.
Vandermeer
,
R. A.
,
1980
, “
Phase Trans-Formations in a Uranium + 14 at.% Niobium Alloy
,”
Acta Metall.
,
28
(
3
), pp.
383
393
.10.1016/0001-6160(80)90173-X
17.
Sunwoo
,
A. J.
, and
Hiromoto
,
D. S.
,
2004
, “
Effects of Natural Aging on the Tensile Properties of Water-Quenched U- C6%Nb Alloy
,”
J. Nucl. Mater.
,
327
(
1
), pp.
37
45
.10.1016/j.jnucmat.2004.01.014
18.
Eckelmeyer
,
K. H.
,
Romig
,
A. D.
, and
Weirick
,
L. J.
,
1984
, “
The Effect of Quench Rate on the Microstructure, Mechanical Properties, and Corrosion Behavior of U-6 wt% Nb
,”
Metall. Trans.
,
15
(
7
), pp.
1319
1330
.10.1007/BF02648560
19.
Bannister
,
G. H.
, and
Murray
,
J. R.
,
1960
, “
Some Observations on U-Mo-Nb Alloys
,”
J. Less Common Met.
,
2
(
5
), pp.
372
382
.10.1016/0022-5088(60)90046-1
20.
Ivanov
,
O. S.
,
Gomozov
,
L. I.
,
Tseitlin
,
V. Z.
, and
Larionov
,
V. V.
,
1962
, “
Hardness of Niobium Molybdenum Alloys at Temperatures Up to 1600°
,”
Met. Sci. Heat Treat.
,
4
(
7–8
), pp.
276
278
.10.1007/BF00814412
21.
Vambersky
,
Y. V.
,
Udovsky
,
A. L.
, and
Ivanov
,
O. S.
,
1975
, “
Investigation of Thermodynamic Properties of Bcc Solid Solutions of Uranium (II). the Uranium-Niobium System
,”
J. Nucl. Mater.
,
55
(
1
), pp.
96
108
.10.1016/0022-3115(75)90139-7
22.
Balart
,
S.
, and
Bruzzoni
,
P.
,
2000
, “
U-Mo Alloy Powder Obtained by a Hydride-Dehydride Process
,”
International Meeting on Reduced Enrichment for Research and Test Reactors
, Las Vegas, NV, Oct. 1–6, pp.
69
72
.https://www.osti.gov/etdeweb/servlets/purl/20432977
23.
Stetskiy
,
Y. A.
,
Trifonov
,
Y. I.
,
Mitrofanov
,
A. V.
, and
Samarin
,
V. I.
,
2002
, “
Manufacturing and Investigation of U-Mo LEU Fuel Granules by Hydride-Dehydride Processing
,”
International Meeting on Reduced Enrichment for Research and Test Reactors
, Bariloche, Argentina, Nov. 3–8, pp.
3
8
.https://www.osti.gov/etdeweb/servlets/purl/20432960
24.
Bogatishcheva
,
N. S.
,
Faizullin
,
M. Z.
,
Popov
,
A. P.
,
Nikitin
,
E. D.
, and
Chem
,
J.
,
2017
, “
Critical Properties, Heat Capacities, and Thermal Diffusivities of Four Saturated Triglycerides
,”
J. Chem. Thermodyn.
,
113
, pp.
308
314
.10.1016/j.jct.2017.07.006
25.
Bogatishcheva
,
N. S.
,
Faizullin
,
M. Z.
,
Nikitin
,
E. D.
, and
Russ
,
J.
,
2017
, “
Heat Capacities and Thermal Diffusivities of n-Alkane Acid Ethyl Esters-Biodiesel Fuel Components
,”
Russ. J. Phys. Chem.
,
91
(
9
), pp.
1647
1653
.10.1134/S0036024417090084
26.
Irukuvarghula
,
S.
,
Ahn
,
S.
, and
McDeavitt
,
S. M.
,
2016
, “
Decomposition of the γ Phase in as Cast and Quenched U-Zr Alloys
,”
J. Nucl. Mater.
,
473
, pp.
206
217
.10.1016/j.jnucmat.2016.02.028
27.
Landa
,
A.
,
Söderlind
,
P.
, and
Wu
,
A.
,
2020
, “
Phase Stability in U-6Nb Alloy Doped With Ti From the First Principles Theory
,”
Appl. Sci.-Basel
,
10
(
10
), p.
3417
.10.3390/app10103417
28.
Park
,
J. M.
,
Kim
,
K. H.
,
Sohn
,
D. S.
,
Kim
,
C. K.
, and
Hofman
,
G. L.
,
1999
, “
Characterization of U-Nb-Zr Dispersion Fuel Prepared by Centrifugal Atomization Process
,”
J. Nucl. Mater.
,
265
(
1–2
), pp.
38
43
.10.1016/S0022-3115(98)00647-3
29.
Kaity
,
S.
,
Banerjee
,
J.
,
Parida
,
S. C.
,
Behere
,
P. G.
, and
Bhasin
,
V.
,
2020
, “
Structural, Microstructural and Thermal Analysis of U(6-x) ZrxMo Alloys (x = 0, 2, 4, 6)
,”
J. Nucl. Mater.
,
532
, p.
152046
.10.1016/j.jnucmat.2020.152046
30.
Burkes
,
D. E.
,
Schwerdt
,
I. J.
,
Huber
,
T. K.
,
Breitkreutz
,
H.
,
Reiter
,
C.
,
Petry
,
W.
,
Schulthess
,
J. L.
,
Casella
,
A. M.
,
Casella
,
A. J.
,
Buck
,
E. C.
,
Pool
,
K. N.
,
MacFarlan
,
P. J.
,
Edwards
,
M. K.
, and
Smith
,
F. N.
,
2021
, “
Thermal Properties of U-Mo Alloys Irradiated Under High Fission Power Density
,”
J. Nucl. Mater.
,
547
, p.
152823
.10.1016/j.jnucmat.2021.152823
You do not currently have access to this content.