Abstract

Neutronics calculations are the basis of reactor analysis and design. Finite element methods (FEM) have gained increasing attention in solving neutron transport problems for the rigorous mathematical formulation and the flexibility of handling complex geometric domains and boundary conditions. In order to reduce the computational errors caused by the homogenization of cross sections, this paper adopts the discontinuous Galerkin finite element method (DG-FEM) to solve the generalized eigenvalue problem formulated by the neutron diffusion theory and compensates the homogenization error by incorporating discontinuity factors. The results show that the discontinuous Galerkin finite element method can introduce the discontinuity factors with clear mathematical and physical meanings. The computational results of the discontinuous Galerkin finite element method are slightly better than those of the continuous Galerkin finite element method. However, the computation cost of the former is higher than that of the latter. Although good parallel efficiency can be achieved, the discontinuous Galerkin finite element method is not preferable for large-scale problems unless the effect of the discontinuity factors is significant.

References

1.
Cho
,
N. Z.
,
2005
, “
Fundamentals and Recent Developments of Reactor Physics Methods
,”
Nucl. Eng. Technol.
,
37
(
1
), pp.
25
78
.https://inis.iaea.org/search/search.aspx?orig_q=RN:37056374
2.
Bilodeau
,
G.
,
Cadwell
,
W.
,
Dorsey
,
J.
,
Fairey
,
J.
, and
Varga
,
R.
,
1957
, “
PDQ–an IBM-704 Code to Solve the Two-Dimensional Few-Group Neutron-Diffusion Equations
,”
Westinghouse Electric Corporation, Bettis Plant
,
Pittsburgh
, Technical Report No. WAPD-TM-70.
3.
Kang
,
C.
, and
Hansen
,
K.
,
1973
, “
Finite Element Methods for Reactor Analysis
,”
Nucl. Sci. Eng.
,
51
(
4
), pp.
456
495
.10.13182/NSE73-A23278
4.
Kavenoky
,
A.
, and
Lautard
,
J.
,
1982
, “
The neutron kinetics and thermal-hydraulic transient computational module of the neptune system: CRONOS
,”
Meeting on Advances in Reactor Physics and Core Thermal Hydraulics
, Kiamesha Lake, Sept. 22–24, Paper No. CEA-CONF-6479.
5.
Adams
,
M. L.
, and
Martin
,
W. R.
,
1992
, “
Diffusion Synthetic Acceleration of Discontinuous Finite Element Transport Iterations
,”
Nucl. Sci. Eng.
,
111
(
2
), pp.
145
167
.10.13182/NSE92-A23930
6.
Wareing
,
T. A.
,
McGhee
,
J. M.
,
Morel
,
J. E.
, and
Pautz
,
S. D.
,
2001
, “
Discontinuous Finite Element SN Methods on Three-Dimensional Unstructured Grids
,”
Nucl. Sci. Eng.
,
138
(
3
), pp.
256
268
.10.13182/NSE138-256
7.
Lawrence
,
R.
,
1986
, “
Progress in Nodal Methods for the Solution of the Neutron Diffusion and Transport Equations
,”
Prog. Nucl. Energy
,
17
(
3
), pp.
271
301
.10.1016/0149-1970(86)90034-X
8.
Moustafa
,
R. F.
,
2016
, “
Approximation of the Neutron Diffusion Equation on Hexagonal Geometries Using a H-P Finite Element Method
,” Ph.D. thesis,
Universitat Politécnica de Valéncia
, Valencia, Spain.
9.
Quarteroni
,
A.
,
Manzoni
,
A.
, and
Negri
,
F.
,
2016
,
Reduced Basis Methods for Partial Differential Equations: An Introduction
,
Springer
, Cham, Switzerland, p.
296
.
10.
Zhang
,
C. Y.
, and
Chen
,
G.
,
2018
, “
Fast Solution of Neutron Diffusion Problem by Reduced Basis Finite Element Method
,”
Ann. Nucl. Energy
,
111
, pp.
702
708
.10.1016/j.anucene.2017.09.044
11.
Zhang
,
C. Y.
, and
Chen
,
G.
,
2018
, “
Fast Solution of Neutron Transport SP3 Equation by Reduced Basis Finite Element Method
,”
Ann. Nucl. Energy
,
120
, pp.
707
714
.10.1016/j.anucene.2018.06.042
12.
Cherezov
,
A.
,
Sanchez
,
R.
, and
Joo
,
H. G.
,
2018
, “
A Reduced-Basis Element Method for Pin-by-Pin Reactor Core Calculations in Diffusion and SP3 Approximations
,”
Ann. Nucl. Energy
,
116
, pp.
195
209
.10.1016/j.anucene.2018.02.013
13.
Smith
,
K. S.
,
1986
, “
Assembly Homogenization Techniques for Light Water Reactor Analysis
,”
Prog. Nucl. Energy
,
17
(
3
), pp.
303
335
.10.1016/0149-1970(86)90035-1
14.
Nichita
,
E.
,
2009
, “
Evaluating Accuracy of Standard Homogenization and Need for Generalized Equivalence Theory for ACR – Lattice Checkerboard Configurations
,”
Ann. Nucl. Energy
,
36
(
6
), pp.
760
766
.10.1016/j.anucene.2009.02.003
15.
Arnold
,
D. N.
,
1982
, “
An Interior Penalty Finite Element Method With Discontinuous Elements
,”
SIAM J. Numer. Anal.
,
19
(
4
), pp.
742
760
.10.1137/0719052
16.
Satori
,
E.
,
1991
, “
Final Specification of Benchmark NEACRPL-336
,” Technical Report No. NDB/91/1402/avt, OECD.
17.
Horelik
,
N.
,
Herman
,
B.
,
Forget
,
B.
, and
Smith
,
K.
,
2013
, “
Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS), v1.0.1
,”
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering
, Sun Valley, Idaho, USA.
18.
Davidson
,
G. G.
,
Evans
,
T. M.
,
Jarrell
,
J. J.
, Hamilton, S. P., Pandya, T. M., and
Slaybaugh
,
R. N.
,
2011
, “
Massively Parallel, Three-Dimensional Transport Solutions for the k-Eigenvalue Problem
,”
Nucl. Sci. Eng.
, 177, pp. 111–125.10.13182/NSE12-101
19.
Sanchez
,
R.
,
2009
, “
Assembly Homogenization Techniques for Core Calculations
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
14
31
.10.1016/j.pnucene.2008.01.009
20.
Hébert
,
A.
,
2010
, “
Multigroup Neutron Transport and Diffusion Computations
,”
Handbook of Nuclear Engineering: Nuclear Engineering Fundamentals
,
C.
Dan Gabriel
ed.,
Springer
,
NewYork
, Chap.
8
.
21.
Sheldon
,
H.
,
2013
, “
The Development of a Nodal Method for the Analysis of PWR Cores with Advanced Fuels
,” Ph.D. thesis,
Imperial College London, London, UK
.
22.
Tsuiki
,
M.
, and
Beere
,
W.
,
2005
, “
A Variational Nodal Transport Method for Pressurized Water Core Calculations
,”
Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications Palais Des Papes
,
France
,
Avignon
, Sept. 12–15.
23.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.10.1007/s00366-006-0049-3
24.
Schloegel
,
K.
,
Karypis
,
G.
, and
Kumar
,
V.
,
2002
, “
Parallel Static and Dynamic Multi-Constraint Graph Partitioning
,”
Concurrency Comput.: Pract. Exper.
,
14
(
3
), pp.
219
240
.10.1002/cpe.605
25.
Liu
,
Z. Y.
,
Smith
,
K.
,
Forget
,
B.
, and
Ortensi
,
J.
,
2018
, “
Cumulative Migration Method for Computing Rigorous Diffusion Coefficients and Transport Cross Sections From Monte Carlo
,”
Ann. Nucl. Energy
,
112
, pp.
507
516
.10.1016/j.anucene.2017.10.039
26.
Romano
,
P. K.
,
Horelik
,
N. E.
,
Herman
,
B. R.
,
Nelson
,
A. G.
,
Forget
,
B.
, and
Smith
,
K.
,
2015
, “
OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development
,”
Ann. Nucl. Energy
,
82
, pp.
90
97
.10.1016/j.anucene.2014.07.048
You do not currently have access to this content.