Abstract

This paper presents the generation and the verification of the few-group homogenized cross section for Batan-FUEL code. This code is routinely used for fuel management in the G. A. Siwabessy Multipurpose Reactor (RSG-GAS). The Monte Carlo code Serpent 2 code, in conjunction with the latest nuclear data library ENDF/B-VIII.0, was used. Calculations using the existing newly generated few-group cross section data were carried out for the 88th core. The calculated core parameters such as excess reactivity and control rod worth are compared to the available experimental data. On the other hand, the fuel burnup fraction and radial power peaking factor (PPF) are compared to the results of Serpent 2. It was shown that the new cross section data have more consistency and a better agreement excess reactivity and control rod worth compared to the experimental data. Similarly, the U-235 burnup fraction and radial power peaking factor by the new cross section data are also shown to concur well with Serpent 2. The newly generated few-group cross section is recommended to replace the existing ones for the fuel management of RSG-GAS.

References

1.
Hong
,
L. P.
,
Arbie
,
B.
,
Sembiring
,
T. M.
,
Prayoto
,
P.
, and
Nabbi
,
R.
,
1998
, “Fuel Management Strategy for the New Equilibrium Silicide Core Design of RSG, as (MPR-30), ”
Nucl. Eng. Des.
,
180
(
3
), pp.
207
219
.10.1016/S0029-5493(97)00301-4
2.
Liem
,
P. H.
, and
Sembiring
,
T. M.
,
2010
, “
Design of Transition Cores of RSG GAS (MPR-30) With Higher Loading Silicide Fuel
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1433
1442
.10.1016/j.nucengdes.2010.01.028
3.
Sembiring
,
T. M.
,
Surbakti
,
T
,
Pinem
,
S.
, and
Febrianto
,
2001
, “
Neutronic Design of Mixed Oxide-Silicide Cores for the Core Conversion of RSG-GAS Reactor
,”
Atom Indonesia
,
27
(
2
), pp.
85
101
.https://inis.iaea.org/search/search.aspx?orig_q=RN:34002415
4.
Wickert
,
M.
,
1986
, “
Concept and Methods of the Program MAIN: Controlling the IAEFUEL Program Cycle for Neutronic Calculations Regarding Research Reactor
,” Interatom Bericht/Report Ident-No. 54.07100.4.
5.
Liem
,
P. H.
,
1996
, “
Batan-Fuel: A General in-Core Fuel Management Code
,”
Atom Indonesia
,
22
, pp.
67
80
.https://inis.iaea.org/search/search.aspx?orig_q=RN:28059615
6.
Kuntoro
,
I.
,
Pinem
,
S.
,
Sembiring
,
T. M.
,
Haryanto
,
D.
, and
Purwanto
,
S.
,
2021
, “
Evaluation of Equilibrium Core Operation of the RSG-GAS Reactor
,”
J. Teknol. Reakt. Nuklir Tri Dasa Mega
,
23
(
1
), pp.
15
20
.10.17146/tdm.2021.23.1.6150
7.
NEA Data Bank
,
2004
, “
WIMSD5 Deterministic Multigroup Reactor Lattice Calculations
,” NEA-1507/04, accessed May 15, 2022, https://www.oecd-nea.org/tools/abstract/detail/nea-1507/
8.
Chadwick
,
M. B.
,
Obložinský
,
P.
,
Herman
,
M.
,
Greene
,
N. M.
,
McKnight
,
R. D.
,
Smith
,
D. L.
,
Young
,
P. G.
, et al.,
2006
, “
ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nucl. Data Sheets
,
107
(
12
), pp.
2931
3060
.10.1016/j.nds.2006.11.001
9.
Leppänen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
10.
Brown
,
D. A.
,
Chadwick
,
M. B.
,
Capote
,
R.
,
Kahler
,
A. C.
,
Trkov
,
A.
,
Herman
,
M. W.
,
Sonzogni
,
A. A.
, et al.,
2018
, “
ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library With CIELO-Project Cross Sections, New Standards and Thermal Scattering Data
,”
Nucl. Data Sheet
,
148
, pp.
1
142
.10.1016/j.nds.2018.02.001
11.
Pinem
,
S.
,
Liem
,
P. H.
,
Sembiring
,
T. M.
, and
Surbakti
,
T.
,
2016
, “
Fuel Element Burnup Measurements for the Equilibrium LEU Silicide RSG GAS (MPR-30) Core Under a New Fuel Management Strategy
,”
Ann. Nucl. Energy
,
98
, pp.
211
217
.10.1016/j.anucene.2016.08.010
12.
Sembiring
,
T. M.
,
Pinem
,
S.
,
Hartanto
,
D.
, and
Liem
,
P. H.
,
2021
, “
Analysis of the Excess Reactivity and Control Rod Worth of RSG-GAS Equilibrium Silicide Core Using Continuous-Energy Monte Carlo Serpent 2 Code
,”
Ann. Nucl. Energy
,
154
, p.
108107
.10.1016/j.anucene.2020.108107
13.
Siefman
,
D. J.
,
Gaëtan
,
G.
,
Rais
,
A.
,
Pautz
,
A.
, and
Hursin
,
M.
,
2015
, “
Full Core Modeling Techniques for Research Reactors With Irregular Geometries Using Serpent and PARCS Applied to the CROCUS Reactor
,”
Ann. Nucl. Energy
,
85
, pp.
434
443
.10.1016/j.anucene.2015.05.004
14.
Dambrosio
,
A.
,
Ruščák
,
M.
,
Mazzini
,
G.
, and
Musa
,
A.
,
2018
, “
Neutronic Analysis of the LVR-15 Research Reactor Using the PARCS Code
,”
Ann. Nucl. Energy
,
117
, pp.
145
154
.10.1016/j.anucene.2018.03.009
15.
Tran
,
V. P.
,
Nguyen
,
K. C.
,
Hartanto
,
D.
,
Tran
,
H. N.
,
Tran
,
V. T.
,
Hoang
,
V. K.
, and
Ha
,
P. N. V.
,
2021
, “
Development of a PARCS/Serpent Model for Neutronics Analysis of the Dalat Nuclear Research Reactor
,”
Nucl. Sci. Tech.
,
32
(
2
), p.
15
.10.1007/s41365-021-00855-5
16.
Leppänen
,
J.
,
Pusa
,
M.
, and
Fridman
,
E.
,
2016
, “
Overview of Methodology for Spatial Homogenization in the Serpent 2 Monte Carlo Code
,”
Ann. Nucl. Energy
,
96
, pp.
126
136
.10.1016/j.anucene.2016.06.007
17.
Manuele
,
A.
,
Adrien
,
B.
,
Hursin
,
M.
,
Leppänen
,
J.
,
Giuseppe
,
P.
,
Sandro
,
P.
, and
Rubiolo
,
P.
,
2015
, “
A Collision History-Based Approach to Sensitivity/Perturbation Calculations in the Continuous Energy Monte Carlo Code SERPENT
,”
Ann. Nucl. Energy
,
85
, pp.
245
258
.10.1016/j.anucene.2015.05.008
18.
Leppänen
,
J.
,
2019
, “
Response Matrix Method-Based Importance Solver and Variance Reduction Scheme in the Serpent 2 Monte Carlo Code
,”
Nucl. Technol.
,
205
(
11
), pp.
1416
1432
.10.1080/00295450.2019.1603710
19.
Hartanto
,
D.
, and
Liem
,
P. H.
,
2020
, “
Analysis of the First Core of Indonesian Multipurpose Research Reactor RSG-GAS Using the Serpent Monte Carlo Code and ENDF/B-VIII.0 Nuclear Data Library
,”
Nucl. Eng. Technol.
,
52
(
12
), pp.
2725
2732
.10.1016/j.net.2020.05.027
20.
Liu
,
Z.
,
Smith
,
K.
,
Forget
,
B.
, and
Ortensi
,
J.
,
2018
, “
Cumulative Migration Method for Computing Rigorous Diffusion Coefficients and Transport Cross Sections From Monte Carlo
,”
Ann. Nucl. Energy
,
112
, pp.
507
516
.10.1016/j.anucene.2017.10.039
You do not currently have access to this content.