Abstract

The development of an accident tolerant nuclear fuel for water-cooled reactors would redefined the status of these reactors from traditional active safety to passive safety systems. As a possible solution toward enhancing the safety of light-water reactors (LWRs), loose-coated particles of enriched uranium dioxide (UO2) fuel with the ability to retain gaseous and metallic fission products in the case of a loss of cooling event can be introduced inside Silicon-Carbide cladding tubes of the fuel assembly (see Figs. 1(a) and 1(b)). These coated particles are treated as a bed from where heat is transferred to the cladding tube and the helium gas movement is due to natural convection. A slender geometrical model with tube-to-particle diameter ratio N = 2.503 and porosity ε = 0.546 mimicking the proposed nuclear fuel in the cladding was numerically simulated. This study is to investigate the heat transfer characteristics and flow distribution under buoyancy driven force expected in the cladding tube of the proposed nuclear fuel using a commercial code. Random packing of the particles is achieved by discrete element method (DEM) simulation with the aid of starccm+. The temperature contour and velocity vector plots obtained can be said to be good illustration of anticipated heat transfer and transport phenomenon to occur in the proposed fuel design. Simulated results for particle-to-fluid heat transfer coefficient, Nusselt number, and Rayleigh number which are of prime importance when analyzing natural convection heat transfer performance in fixed bed reactors were validated. Results from this work show close agreement with results obtained in established numerical and experimental works.

References

1.
Janse van Rensburg
,
J. J.
, and
Hoffmann
,
J. E.
,
2006
, “
CFD Modeling of the PBMR Reactor Unit
,”
Proceedings of the Third International Topical Meeting on High Temperature Reactor Technology (HTR2006)
, Johannesburg, South Africa, Oct. 1–4, p.
238
.
2.
Guardo
,
A.
,
Coussirat
,
M.
,
Recasens
,
F.
,
Larrayoz
,
M. A.
, and
Escaler
,
X.
,
2006
, “
CFD Study on Particle- to-Fluid Heat Transfer in Fixed Bed Reactors: Convective Heat Transfer at Low and High Pressure
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4341
4353
.10.1016/j.ces.2006.02.011
3.
Kta
,
S.
,
1978
, “
Reactor Core Design of High Temperature Gas-Cooled Reactors
,” Nuclear Safety Standards Commission, Germany, KTA Standard Nos. 3102.1, 3102.2, 3102.3 (1983, 1981).
4.
Noah
,
O. O.
,
Slabber
,
J. F.
, and
Meyer
,
J. P.
,
2015
, “
Investigation of Natural Convection Heat Transfer Phenomena in Packed Beds: Lead-Way Towards New Nuclear Fuel Design
,”
ASME J. Nucl. Eng. Rad. Sci.
,
1
(
4
), p.
041014
.10.1115/1.4030983
5.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E. M. J.
, and
Baglietto
,
E.
,
2013
, “
Quasi-Direct Numerical Simulation of a Pebble Bed Configuration: Part 1: Flow (Velocity) Field Analysis
,”
Nucl. Eng. Des.
,
263
, pp.
473
489
.10.1016/j.nucengdes.2012.06.016
6.
Zeiser
,
T.
,
Lammers
,
P.
,
Klemm
,
E.
,
Li
,
Y. W.
,
Bernsdorf
,
J.
, and
Brenner
,
G.
,
2001
, “
CFD Calculation of Flow, Dispersion and Reaction in a Catalyst Filled Tube by the Lattice Boltzmann Method
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1697
1704
.10.1016/S0009-2509(00)00398-5
7.
Augier
,
F.
,
Idoux
,
F.
, and
Delenne
,
J. Y.
,
2010
, “
Numerical Simulation of Transfer and Transport Properties Inside Packed Beds of Spherical Particles
,”
Chem. Eng. Sci.
,
65
(
3
), pp.
1055
1064
.10.1016/j.ces.2009.09.059
8.
Calis
,
H. P. A.
,
Nijenhuis
,
J.
,
Paikert
,
B. C.
,
Dautzenberg
,
F. M.
, and
van den Bleek
,
C. M.
,
2001
, “
CFD Modeling and Experimental Validation of Pressure Drop and Flow Profile in a Novel Structured Catalytic Reactor Packing
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1713
1720
.10.1016/S0009-2509(00)00400-0
9.
Romkes
,
S. J. P.
,
Dautzenberg
,
F. M.
,
van den Bleek
,
C. M.
, and
Calis
,
H. P. A.
,
2003
, “
CFD Modeling and Experimental Validation of Particle-to-Fluid Mass and Heat Transfer in a Packed Bed at Very Low Channel to Particle Diameter Ratio
,”
Chem. Eng. J.
,
96
(
1–3
), pp.
3
13
.10.1016/j.cej.2003.08.026
10.
Derkx
,
O. R.
, and
Dixon
,
A. G.
,
1996
, “
Determination of the Fixed Bed Wall Heat Transfer Coefficient Using Computational Fluid Dynamics
,”
Numer. Heat Transfer Part A
,
29
(
8
), pp.
777
794
.10.1080/10407789608913819
11.
Logtenberg
,
S. A.
, and
Dixon
,
A. G.
,
1998
, “
Computational Fluid Dynamics Studies of Fixed Bed Heat Transfer
,”
Chem. Eng. Process
,
37
(
1
), pp.
7
21
.10.1016/S0255-2701(97)00032-9
12.
Logtenberg
,
S. A.
,
Nijemeisland
,
M.
, and
Dixon
,
A. G.
,
1999
, “
Computational Fluid Dynamics Simulations of Fluid Flow and Heat Transfer at the Wall-Particle Contact Points in a Fixed-Bed Reactor
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2433
2439
.10.1016/S0009-2509(98)00445-X
13.
Nijemeisland
,
M.
, and
Dixon
,
A. G.
,
2001
, “
Comparison of CFD Simulations to Experiment for Convective Heat Transfer in a Gas–Solid Fixed Bed
,”
Chem. Eng. J.
,
82
(
1–3
), pp.
231
246
.10.1016/S1385-8947(00)00360-0
14.
Suzuki
,
M.
,
Makino
,
K.
,
Yamada
,
M.
, and
Iinoya
,
K.
,
1981
, “
A Study on the Coordination Number in a System of Randomly Packed, Uniform-Sized Spherical Particles
,”
Int. Chem. Eng.
,
21
, pp.
482
488
.
15.
Cundall
,
P. A.
, and
Strack
,
OD. I.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geo Tech.
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
16.
Delenne
,
J.-Y.
,
El Youssoufi
,
M. S.
,
Cherblanc
,
F.
, and
Bénet
,
J.-C.
,
2004
, “
Mechanical Behavior and Failure of Cohesive Granular Materials
,”
Int. J. Numer. Anal. Methods Geomech.
,
28
(
15
), pp.
1577
1594
.10.1002/nag.401
17.
CD-Adapco
,
2012
, “
CCM+ User Guide 7.02, Setting Material Properties Methods
,” Melville, NY, p.
2463
.
18.
Soulie
,
F.
,
Cherblanc
,
F.
,
El Youssoufi
,
M. S.
, and
Saix
,
C.
,
2006
, “
Influence of Liquid Bridges on the Mechanical Behaviour of Polydisperse Granular Materials
,”
Int. J. Numer. Anal. Methods Geomech.
,
30
(
3
), pp.
213
228
.10.1002/nag.476
19.
Richefeu
,
V.
,
El Youssoufi
,
M. S.
, and
Radjai
,
F.
,
2006
, “
Shear Strength Properties of Wet Granular Materials
,”
Phys. Rev. E
,
73
(
5
), p.
051304
.10.1103/PhysRevE.73.051304
20.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1986
,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford, UK
.
21.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modeling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.10.1016/S0142-727X(00)00007-2
22.
Shur
,
M.
,
Spalart
,
P.
,
Squires
,
K.
,
Strelets
,
M.
, and
Travin
,
A.
,
2005
, “
Three Dimensionality in Reynolds-Averaged Navier–Stokes Solutions Around Two Dimensional Geometries
,”
AIAA J.
,
43
(
6
), pp.
1230
1242
.10.2514/1.9694
23.
Noah
,
O. O.
,
Slabber
,
J. F.
, and
Meyer
,
J. P.
,
2016
, “
Modeling a Porous Region for Natural Convection Heat Transfer and Experimental Validation in Slender Cylindrical Geometries
,”
Nucl. Technol.
,
193
(
3
), pp.
375
390
.10.13182/NT15-56
24.
Ichimiya
,
K.
,
1999
, “
A New Method for Evaluation of Heat Transfer Between Solid Material and Fluid in a Porous Medium
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
4
), pp.
978
983
.10.1115/1.2826089
25.
Du Toit
,
C. G.
,
Rousseau
,
P. G.
,
Greyvenstein
,
G. P.
, and
Landman
,
W. A.
,
2006
, “
A System CFD Model of a Packed Bed High Temperature Gas-Cooled Nuclear Reactor
,”
J. Therm. Sci.
,
45
(
1
), pp.
70
85
.10.1016/j.ijthermalsci.2005.04.010
26.
Combarnous
,
M.
, and
Bories
,
S.
,
1974
, “
M'odelization de la Convection Naturelle au Sein D'unecouche Poreuse Horizontale ′a L'aide D'un Coefficient de Transfert Solide-Fluide
,”
Int. J. Heat Mass Transfer
,
17
(
4
), pp.
505
515
.10.1016/0017-9310(74)90027-1
27.
Achenbach
,
E.
,
1995
, “
Heat and Flow Characteristics of Packed Beds
,”
Exp. Therm. Fluid Sci.
,
10
(
1
), pp.
17
27
.10.1016/0894-1777(94)00077-L
28.
Sung
,
J. K.
, and
Christopher
,
Y. C.
,
1995
, “
Convective Heat Transfer in Porous and Overlying Fluid Layers Heated From Below
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
319
329
.10.101/0017-9310(95)00118-S
29.
Noah
,
O. O.
,
Slabber
,
J. F.
, and
Meyer
,
J. P.
,
2019
, “
Introducing Passive Nuclear Safety in Water-Cooled Reactors - Numerical Simulation and Validation of Natural Convection Heat Transfer and Transport in Packed Beds of Heated Microspheres
,” ASME Paper No. ICONE27-1383.
You do not currently have access to this content.