Abstract

The objective of this paper is to quantify the coupling effect on the power distribution of sodium-cooled fast reactors (SFRs), specifically the European SFR. Calculations are performed with several state-of-the-art reactor physics and Multiphysics codes (TRACE/PARCS, DYN3D, WIMS, COUNTHER, and GeN-Foam) to build confidence in the methodologies and validity of results. Standalone neutronic calculations were generally in excellent agreement with a reference Monte Carlo-calculated power distribution (from Serpent). Next, the impact of coolant density and fuel temperature Doppler feedback was calculated. Reactivity coefficients for perturbations in the inlet temperature, coolant heat up and core power was shown to be negative with values of around −0.5 pcm/°C, −0.3 pcm/°C, and −3.5 pcm/%, respectively. Fuel temperature and coolant density feedback was found to introduce a roughly −1%/+1% in/out power tilt across the core. Calculations were then extended to axial expansion for cases where fuel is linked and unlinked to the clad. Core calculations are in good agreement with each other. The impact of differential fuel expansion is found to be larger for fuel both linked and unlinked to the clad, with the in/out power tilt increasing to around −4%/+2%. Thus, while broadly confirming the known result that standalone physics calculations give good results, the expansion coupling effect is perhaps more than anticipated a priori. These results provide a useful benchmark for the further development of Multiphysics codes and methodologies in support of advanced reactor calculations.

References

1.
Rimpault
,
G.
,
Plisson
,
D.
,
Tommasi
,
J.
, and
Jacqmin
,
R.
,
2002
, “
The ERANOS Code and Data System for Fast Reactor Neutronic Analysis
,”
Presented at the PHYSOR 2002
,
Seoul, Korea
, Oct.
2.
Zheng
,
Y.
,
Du
,
X.
,
Xu
,
Z.
,
Zhou
,
S.
,
Liu
,
Y.
,
Wan
,
C.
, and
Xu
,
L.
,
2018
, “
SARAX: A New Code for Fast Reactor Analysis Part I: Methods
,”
Nucl. Eng. Des
.,
340
, pp.
421
430
.10.1016/j.nucengdes.2018.10.008
3.
Vidal
,
J.-F.
,
Archier
,
P.
,
Faure
,
B.
,
Jouault
,
V.
,
Palau
,
J.-M.
,
Pascal
,
V.
,
Rimpault
,
G.
,
Auffret
,
F.
,
Graziano
,
L.
,
Masiello
,
E.
, and
Santandrea
,
S.
,
2017
, “
APOLLO3 Homogenization Techniques for Transport Core Calculations—Application to the ASTRID CFV Core
,”
Nucl. Eng. Technol
.,
49
(
7
), pp.
1379
1387
.10.1016/j.net.2017.08.014
4.
Smith
,
M. A.
,
Aliberti
,
G.
, and
Heidet
,
F.
,
2018
, “
Argonne Reactor Code Software Verification and Validation Plan for the Versatile Test Reactor
,”
Argonne National Lab. (ANL)
,
Argonne, IL
, Report No. ANL-VTR-10.
5.
Wade
,
D. C.
, and
Hill
,
R. N.
,
1997
, “
The Design Rationale of the IFR
,”
Prog. Nucl. Energy
,
31
(
1–2
), pp.
13
42
.10.1016/0149-1970(96)00002-9
6.
Kruessmann
,
R.
,
Ponomarev
,
A.
,
Pfrang
,
W.
,
Struwe
,
D.
,
Champigny
,
J.
,
Carluec
,
B.
,
Schmitt
,
D.
, and
Verwaerde
,
D.
,
2015
, “
Assessment of SFR Reactor Safety Issues: Part II: Analysis Results of ULOF Transients Imposed on a Variety of Different Innovative Core Designs With SAS-SFR
,”
Nucl. Eng. Des
.,
285
, pp.
263
283
.10.1016/j.nucengdes.2014.11.037
7.
Mikityuk
,
K.
,
Pelloni
,
S.
,
Coddington
,
P.
,
Bubelis
,
E.
, and
Chawla
,
R.
,
2005
, “
FAST: An Advanced Code System for Fast Reactor Transient Analysis
,”
Ann. Nucl. Energy
,
32
(
15
), pp.
1613
1631
.10.1016/j.anucene.2005.06.002
8.
Jia
,
X.
,
Zheng
,
Y.
,
Du
,
X.
,
Wang
,
Y.
, and
Chen
,
J.
, May
2022
, “
Verification of SARAX Code System in the Reactor Core Transient Calculation Based on the Simplified EBR-II Benchmark
,”
Nucl. Eng. Technol
.,
54
(
5
), pp.
1813
1824
.10.1016/j.net.2021.10.045
9.
Fiorina
,
C.
,
Clifford
,
I.
,
Aufiero
,
M.
, and
Mikityuk
,
K.
,
2015
, “
GeN-Foam: A Novel OpenFOAM® Based Multi-Physics Solver for 2D/3D Transient Analysis of Nuclear Reactors
,”
Nucl. Eng. Des
.,
294
, pp.
24
37
.10.1016/j.nucengdes.2015.05.035
10.
Ortensi
,
J.
,
Baker
,
B. A.
,
Johnson
,
M. P.
,
Wang
,
Y.
,
Labouré
,
V. M.
,
Schunert
,
S.
,
Gleicher
,
F. N.
, and
DeHart
,
M. D.
,
2021
, “
Validation of the Griffin Application for Treat Transient Modeling and Simulation
,”
Nucl. Eng. Des
.,
385
, p.
111478
.10.1016/j.nucengdes.2021.111478
11.
Vazquez
,
M.
,
Tsige-Tamirat
,
H.
,
Ammirabile
,
L.
, and
Martin-Fuertes
,
F.
,
2012
, “
Coupled Neutronics Thermal-Hydraulics Analysis Using Monte Carlo and Sub-Channel Codes
,”
Nucl. Eng. Des
.,
250
, pp.
403
411
.10.1016/j.nucengdes.2012.06.007
12.
Reed
,
M.
,
Smith
,
K.
, and
Forget
,
B.
,
2014
, “
The ‘Virtual Density’ Theory of Neutronics: A GenericMethod for Geometry Distortion Reactivity Coefficients
,”
Physor 2014
,
Kyoto, Japan
, Sept. 28–Oct. 3.
13.
Fiorina
,
C.
,
Radman
,
S.
,
Koc
,
M.-Z.
, and
Pautz
,
A.
,
2019
, “
Detailed Modelling of the Expansion Reactivity Feedback in Fast Reactors using OpenFoam
,”
M&C 2019
, Portland, OR, Aug. 25–29, pp.
25
29
.https://www.researchgate.net/publication/337739496_DETAILED_MODELLING_OF_THE_EXPANSION_REACTIVITY_FEEDBACK_IN_FAST_REACTORS_USING_OpenFOAM
14.
Merzari
,
E.
,
Shemon
,
E. R.
,
Yu
,
Y. Q.
,
Thomas
,
J. W.
,
Obabko
,
A.
,
Jain
,
R.
,
Mahadevan
,
V.
,
Tautges
,
T.
,
Solberg
,
J.
,
Ferencz
,
R. M.
, and
Whitesides
,
R.
,
2015
, “
Multi-Physics Demonstration Problem With the SHARP Reactor Simulation Toolkit
,”
Argonne National Lab. (ANL)
,
Argonne, IL
, Report No. ANL/NE-15/44.
15.
Martin
,
N.
,
Stewart
,
R.
, and
Bays
,
S.
,
2022
, “
A Multiphysics Model of the Versatile Test Reactor Based on the MOOSE Framework
,”
Ann. Nucl. Energy
,
172
, p.
109066
.10.1016/j.anucene.2022.109066
16.
Nikitin
,
E.
, and
Fridman
,
E.
,
2018
, “
Extension of the Reactor Dynamics Code DYN3D to SFR Applications–Part I: Thermal Expansion Models
,”
Ann. Nucl. Energy
,
119
, pp.
382
389
.10.1016/j.anucene.2018.05.015
17.
Lindley
,
B.
,
Tollit
,
B.
,
Smith
,
P.
,
Charles
,
A.
,
Mason
,
R.
,
Ware
,
T.
,
Perry
,
R.
,
Lavarenne
,
J.
,
Davies
,
U.
, and
Gregg
,
R.
,
2021
, “
Fast Reactor Multiphysics and Uncertainty Propagation Within Wims
,”
EPJ Web Conf
.,
247
, p.
06002
.10.1051/epjconf/202124706002
18.
Guidez
,
J.
,
2022
, “
History of the ESFR SMART Project
,”
ASME J. Nucl. Eng. Radiat. Sci
.,
8
(
1
), p. 010306.10.1115/1.4050298
19.
Fridman
,
E.
,
Álvarez Velarde
,
F.
,
Romojaro Otero
,
P.
,
Tsige-Tamirat
,
H.
,
Jiménez Carrascosa
,
A.
,
García Herranz
,
N.
,
Bernard
,
F.
,
Gregg
,
R.
,
Davies
,
U.
,
Krepel
,
J.
,
Massara
,
S.
,
Poumerouly
,
S.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2022
, “
Neutronic Analysis of the European Sodium Fast Reactor: Part I—Fresh Core Results
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
), p. 011301.10.1115/1.4048905
20.
Fridman
,
E.
,
Álvarez Velarde
,
F.
,
Romojaro Otero
,
P.
,
Tsige-Tamirat
,
H.
,
Jiménez Carrascosa
,
A.
,
García Herranz
,
N.
,
Bernard
,
F.
,
Gregg
,
R.
,
Davies
,
U.
,
Krepel
,
J.
,
Lindley
,
B.
,
Massara
,
S.
,
Poumerouly
,
S.
,
Girardi
,
E.
, and
Mikityuk
,
K.
,
2021
, “
Neutronic Analysis of the European Sodium Fast Reactor: Part II—Burnup Results
,”
ASME J. Nucl. Eng. Radiat. Sci
.,
8
(
1
), p.
011302
.10.1115/1.4048765
21.
Leppänen
,
J.
,
Pusa
,
M.
,
Viitanen
,
T.
,
Valtavirta
,
V.
, and
Kaltiaisenaho
,
T.
,
2015
, “
The Serpent Monte Carlo Code: Status, Development and Applications in 2013
,”
Ann. Nucl. Energy
,
82
, pp.
142
150
.10.1016/j.anucene.2014.08.024
22.
Nuclear Regulatory Commission, “
2013
, “
TRACE V5.0. Theory Manual. Field Equations, Solution Methods, and Physical Models, Office for Nuclear Regulatory Research. Washington
,” Nuclear Regulatory Commission, Washington, DC, accessed Feb. 21, 2023, http://pbadupws.nrc.gov/docs/ML0710/ML071000097.pdf
23.
Spore
,
J. W.
,
Sadasivan
,
P.
, and
Liles
,
D. R.
,
2001
, “
Accelerator Transmutation of Waste Updates for TRAC-M LA-UR-013660
,” Los-Alamos National Laboratory, Los-Alamos, NM, Technical Report No. LAUR-01-3660.
24.
Downar
,
T.
,
Xu
,
Y.
,
Seker
,
V.
, and
Hudson
,
H.
,
2009
, “PARCS v3.0–U.S. NRC Core Neutronics Simulator–USER MANUAL,” Nuclear Regulatory Commission, Washington, DC, accessed Feb. 21, 2023, https://www.nrc.gov/docs/ML1016/ML101610117.pdf
25.
Cho
,
J. Y.
,
Joo
,
H. G.
,
Cho
,
B.-O.
, and
Zee
,
S. Q.
,
2001
, “
Hexagonal CMFD Formulation Employing Triangle-Based Polynomial Expansion Nodal Kernel
,”
Presented at the M&C 2001
,
Salt Lake City, UT
, Nov.
11
15
.
26.
Bodi
,
J.
,
Ponomarev
,
A.
, and
Mikityuk
,
K.
, May
2019
, “
Hybrid Stochastic-Deterministic Method of One-Group Cross-Section Generation Applied to Sodium Fast Reactor
,”
Presented at the 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 19)
,
Juan les Pins, France
, May
12
15
.
27.
Rohde
,
U.
,
Kliem
,
S.
,
Grundmann
,
U.
,
Baier
,
S.
,
Bilodid
,
Y.
,
Duerigen
,
S.
,
Fridman
,
E.
,
Gommlich
,
A.
,
Grahn
,
A.
,
Holt
,
L.
,
Kozmenkov
,
Y.
, and
Mittag
,
S.
, May
2016
, “
The Reactor Dynamics Code DYN3D–Models, Validation and Applications
,”
Prog. Nucl. Energy
,
89
, pp.
170
190
.10.1016/j.pnucene.2016.02.013
28.
Fridman
,
E.
, and
Shwageraus
,
E.
,
2013
, “
Modeling of SFR Cores With Serpent–DYN3D Codes Sequence
,”
Ann. Nucl. Energy
,
53
, pp.
354
363
.10.1016/j.anucene.2012.08.006
29.
Nikitin
,
E.
,
Fridman
,
E.
, and
Mikityuk
,
K.
,
2015
, “
On the Use of the SPH Method in Nodal Diffusion Analyses of SFR Cores
,”
Ann. Nucl. Energy
,
85
, pp.
544
551
.10.1016/j.anucene.2015.06.007
30.
Lindley
,
B. A.
,
Hosking
,
J. G.
,
Smith
,
P. J.
,
Powney
,
D. J.
,
Tollit
,
B. S.
,
Newton
,
T. D.
,
Perry
,
R.
,
Ware
,
T. C.
, and
Smith
,
P. N.
,
2017
, “
Current Status of the Reactor Physics Code WIMS and Recent Developments
,”
Ann. Nucl. Energy
,
102
, pp.
148
157
.10.1016/j.anucene.2016.09.013
31.
Lindley
,
B
,
2017
, “
Developments With the WIMS Reactor Physics Code for Whole Core Calculations
,”
Presented at the M&C 2017
,
Jeju, Korea
, Apr.
16
20
.
32.
Davies
,
U.
,
Lindley
,
B.
,
Tollit
,
B.
, and
Shwageraus
,
E.
,
2019
, “
Whole-Core Validation of the Superphenix Reactor Using WIMS11 and an Investigation Into a Hybrid RZ-HEX SP3 Calculation Route
,”
Presented at the M&C 2019
,
Portland, OR
, Aug.
25
29
.
33.
Tollit
,
B
,
2018
, “
Development of a Subchannel Model Within the ANSWERS Software Service WIMS Reactor Physics Code
,”
Presented at the PHYSOR 2018
,
Cancun, Mexico
, Apr.
22
26
.
34.
Werner
,
C. J.
,
Bull
,
J. S.
,
Solomon
,
C. J.
,
Brown
,
F. B.
,
McKinney
,
G. W.
,
Rising
,
M. E.
,
Dixon
,
D. A.
,
Martz
,
R. L.
,
Hughes
,
H. G.
,
Cox
,
L. J.
,
Zukaitis
,
A. J.
,
Armstrong
,
J. C.
,
Forster
,
R. A.
, and
Casswell
,
L.
,
2018
, “
MCNP Version 6.2 Release Notes
,”
Los Alamos National Lab. (LANL)
,
Los Alamos, NM
, Report No. LA-UR-18-20808.
35.
Sanchez
,
V.
,
Imke
,
U.
,
Ivanov
,
A.
, and
Gomez
,
R.
,
2010
, “
SUBCHANFLOW: A Thermal Hydraulic Sub-Channel Program to Analyse Fuel Rod Bundles and Reactor Cores
,”
Presented at the 21 Mexican Nuclear Society Meeting
,
Mexico
, Oct.
24
30
.
36.
Philipponneau
,
Y.
,
1992
, “
Thermal Conductivity of (U, Pu)O2−x Mixed Oxide Fuel
,”
J. Nucl. Mater
.,
188
, pp.
194
197
.10.1016/0022-3115(92)90470-6
37.
Lavarenne
,
J.
,
Bubelis
,
E.
,
Davies
,
U.
,
Gianfelici
,
S.
,
Gicquel
,
S.
,
Krepel
,
J.
,
Lainet
,
M.
,
Lindley
,
B.
,
Mikityuk
,
K.
,
Murphy
,
C.
,
Perrin
,
B.
,
Pfrang
,
W.
,
Ponomarev
,
A.
,
Schubert
,
A.
,
Shwageraus
,
E.
, and
Van Uffelen
,
P.
,
2021
, “
Burn-Up Dependent Modeling of Fuel-to-Clad Gap Conductance and Temperature Predictions for Mixed-Oxide Fuel in the ESFR-SMART Core
,”
ASME J. Nucl. Eng. Radiat. Sci
.,
8
(
1
), p.
011306
.10.1115/1.4050479
38.
Vanier
,
M.
,
Bergeonneau
,
P.
,
Gauthier
,
J. C.
,
Jacob
,
M.
,
de Antoni
,
J.
,
Gesi
,
E.
,
Peerani
,
P.
, and
Adam
,
J. P.
,
1990
, “
Superphénix Reactivity and Feedback Coefficients
,”
Nucl. Sci. Eng
.,
106
(
1
), pp.
30
36
.10.13182/NSE90-A23754
39.
Baker
,
U.
,
Margulis
,
M.
,
Shwageraus
,
E.
,
Fridman
,
E.
,
Carrascosa
,
A. J.
,
García Herranz
,
N.
,
Cabellos
,
O.
,
Gregg
,
R.
, and
Krepel
,
J.
,
2021
, “
Evaluation of the ESFR End of Equilibrium Cycle State: Spatial Distributions of Reactivity Coefficients
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
1
), p.
011316
.10.1115/1.4052121
40.
Perez-Martin
,
S.
,
Ponomarev
,
A.
,
Krüßmann
,
R.
, and
Pfrang
,
W.
,
2013
, “
Importance of Fuel Thermo-Mechanical Properties in a ULOF Transient of a Sodium-Cooled Fast Reactor Used for Minor Actinides Transmutation
,”
Presented at the ICAPP 2013
, Jeju Island, Korea, Apr. 14–18, pp.
713
721
.https://www.researchgate.net/publication/292879113_Importance_of_fuel_thermomechanical_properties_in_a_ULOF_transient_of_a_Sodiumcooled_Fast_Reactor_used_for_minor_actinides_transmutation
41.
Prulhiere
,
G.
,
Fontaine
,
B.
, and
Frosio
,
T.
,
2013
, “
Simulation of the Core Flowering End-of-Life Test Realized on PHENIX Reactor
,”
Presented at the SNA + MC 2013
, Paris, France, Oct. 27–31, Article No. 01403.10.1051/snamc/201401403
42.
Patricot
,
C.
,
Baudron
,
A.-M.
,
Fandeur
,
O.
, and
Broc
,
D.
,
2016
, “
Neutronic Calculation of Deformed Cores: Development of a Time-Dependent Diffusion Solver in CAST3M, a Mechanics Dedicated Finite Element Code
,”
Physor 2016
, Sun Valley, ID, May
1
5
.
You do not currently have access to this content.