Abstract

The small modular reactor (SMR) class core design concept of once-through supercritical light water-cooled reactor (SCWR) with fast neutron spectrum (super fast reactor (FR)) is being developed at Waseda University. For the 300 MWel class design, complete core meltdown may need to be considered in case of a severe accident. This study proposes the new in-vessel retention (IVR) concept of the SMR class super FR (super FR-IVR), which can avoid recriticality even if the whole core relocates to the lower plenum of the reactor pressure vessel (RPV). The core characteristics with a given set of design specifications and criteria are evaluated based on fully coupled neutronics and thermal-hydraulics core burnup calculations. The debris criticality is evaluated based on Monte Carlo based method to consider the RPV lower plenum and debris configurations. The relationships between the 300 MWel class core design with the inner vessel diameter of 2.32 m and the IVR design are revealed. By reducing the operation cycle length from 720 days to 360 days and increasing the core inlet temperature from 280 °C to 370 °C, the required IVR submergence level could be reduced from 2.18 m to 1.38 m, assuming that the debris bed (melt pool) is homogeneous. However, when fully stratified debris configurations are assumed, the required disperser height and the corresponding IVR submergence level may increase to about 2.70 m.

References

1.
Oka
,
Y.
,
Koshizuka
,
S.
,
Ishiwatari
,
Y.
, and
Yamaji
,
A.
,
2010
,
Super Light Water Reactors and Super Fast Reactors Supercritical-Pressure Light Water Cooled Reactors
,
Springer Science & Business Media
,
Berlin, Germany
, pp.
1
644
.
2.
Liu
,
Q.
, and
Oka
,
Y.
,
2015
, “
Single Pass Core Design for a SuperFast Reactor
,”
Ann. Nucl. Energy
,
80
, pp.
451
459
.10.1016/j.anucene.2015.02.036
3.
Noda
,
S.
,
Someya
,
T.
, and
Yamaji
,
A.
,
2017
, “
Flexible Core Design of Super FBR With Multi-Axial Fuel Shuffling
,”
Nucl. Eng. Des.
,
324
, pp.
45
53
.10.1016/j.nucengdes.2017.08.025
4.
IAEA
,
2019
, “
Status of Research and Technology Development for Supercritical Water Cooled Reactors
,” IAEA TECDOC Series, Vienna, Austria, Report No. IAEA-TECDOC-1869.
5.
Yamaji
,
A.
,
Noda
,
S.
,
Fukuda
,
T.
, and
Sukarman
,
2019
, “
Overview of the Heterogeneous Core Design Studies of Super Fast Reactor at Waseda University
,”
Proceedings of the Ninth International Symposium on SCWRs, (ISSCWR-9)
, Vancouver, BC, Canada, Mar. 10–14, Paper No. 447.
6.
Uchimura
,
K.
, and
Yamaji
,
A.
,
2020
, “
Preliminary Core Design Study of Small Supercritical Fast Reactor With Single-Pass Cooling
,”
J. Nucl. Eng.
,
1
(
1
), pp.
46
53
.10.3390/jne1010004
7.
Dimmick
,
G. R.
,
Chatoorgoon
,
V.
,
Khartabil
,
H. F.
, and
Duffey
,
R. B.
,
2002
, “
Natural-Convection Studies for Advanced CANDU Reactor Concepts
,”
Nucl. Eng. Des.
,
215
(
1–2
), pp.
27
38
.10.1016/S0029-5493(02)00039-0
8.
Dimmick
,
G. R.
,
Khartabil
,
H. F.
,
Duffey
,
R. B.
, and
Chatoorgoon
,
V.
,
1999
, “
Natural Convection and Circulation Studies for Advanced CANDU Reactor Concepts in Single and Two-Phase Natural Circulation
,” Genovaviva, Genoa, Italy, pp.
291
300
.
9.
International Atomic Energy Agency
,
2020
, “
Advances in Small Modular Reactor Technology Developments, A Supplement To: IAEA Advanced Reactors Information System (ARIS) 2020 Edition
,” IAEA, Austria, accessed 2021, https://aris.iaea.org/sites/Publications.html
10.
Suzuki
,
T.
,
Kamiyama
,
K.
,
Yamano
,
H.
,
Kubo
,
S.
,
Tobita
,
Y.
,
Nakai
,
R.
, and
Koyama
,
K.
,
2014
, “
A Scenario of Core Disruptive Accident for Japan Sodium-Cooled Fast Reactor to Achieve in-Vessel Retention
,”
J. Nucl. Sci. Technol.
,
51
(
4
), pp.
493
513
.10.1080/00223131.2013.877405
11.
Yamaji
,
A.
, and
Li
,
X.
,
2016
, “
Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents
,”
J. Phys. Ser.
,
739
(
1
), p.
012002
.10.1088/1742-6596/739/1/012002
12.
Takahashi
,
N.
,
Duan
,
G.
,
Furuya
,
M.
, and
Yamaji
,
A.
,
2019
, “
Analysis of Hemispherical Vessel Ablation Failure Involving Natural Convection by MPS Method With Corrective Matrix
,”
Int. J. Adv. Nucl. React. Des. Technol.
,
1
, pp.
19
29.
10.1016/j.jandt.2019.08.001
13.
Humphries
,
L.
,
Beeny
,
B. A.
,
Gelbard
,
F.
,
Louie
,
D. L.
, and
Phillipset
,
J.
,
2017
, “
MELCOR Computer Code Manuals
, Vol.
1
: Primer and Users' Guide Version 2.2.9541, Sandia National Laboratories, Albuquerque.
14.
Humphries
,
L.
,
Beeny
,
B. A.
,
Gelbard
,
F.
,
Louie
,
D. L.
, and
Phillipset
,
J.
,
2017
, “
MELCOR Computer Code Manuals
, Vol.
2
: Reference Manual Version 2.2.9541 2017, Sandia National Laboratories, Albuquerque.
15.
Yamaji
,
A.
,
Oka
,
Y.
,
Ishiwatari
,
Y.
,
Liu
,
J.
, and
Suzuki
,
M.
,
2006
, “
Principle of Rationalizing the Criteria for Abnormal Transients of the Super LWR With Fuel Rod Analyses
,”
Ann. Nucl. Energy
,
33
(
11–12
), pp.
984
993
.10.1016/j.anucene.2006.05.010
16.
Someya
,
T.
, and
Yamaji
,
A.
,
2016
, “
Core Design of High Breeding Fast Reactor Cooled by Supercritical Pressure Light Waster
,”
Nucl. Eng. Des.
,
296
, pp.
30
37
.10.1016/j.nucengdes.2015.11.007
17.
Okumura
,
K.
,
Kugo
,
T.
,
Kaneko
,
K.
, and
Tsuchihashi
,
K.
,
2007
,
SRAC2006: A Comprehensive Neutronics Calculation Code System
,
Japan Atomic Energy Agency (JAEA
), Japan, accessed 2021, https://jopss.jaea.go.jp/search/servlet/search?5006334
18.
Shibata
,
K.
,
Iwamoto
,
O.
,
Nakagawa
,
T.
,
Iwamoto
,
N.
,
Ichihara
,
A.
,
Kunieda
,
S.
,
Chiba
,
S.
,
Furutaka
,
K.
,
Otuka
,
N.
,
Ohsawa
,
T.
,
Murata
,
T.
,
Matsunobu
,
H.
,
Zukeran
,
A.
,
Kamada
,
S.
, and
Katakura
,
J.-I.
,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
(
1
), pp.
1
30
.10.1080/18811248.2011.9711675
19.
Han
,
C.
,
2010
,
Code System for Core Design of Supercritical Water-Cooled Fast Reactor
,
University of Tokyo
,
Tokyo, Japan
, pp.
1
137
.
20.
Watts
,
M.
, and
Chou
,
C.
,
1982
, “
Mixed Convection Heat Transfer to Supercritical PressureWater
,”
Proceedings of the Seventh International Heat Transfer Conference
, Munich, Germany, Sept. 6–10, pp.
495
500
.
21.
IAEA
,
2014
, “
Heat Transfer Behaviour and Thermohydraulics Code Testing for SupercriticalWater Cooled Reactors (SCWRs); IAEA TECDOC Series
, Vienna, Austria, Report No.
IAEA-TECDOC-1746
, pp.
18
68.
22.
Nagaya
,
Y.
,
Okumura
,
K.
,
Sakurai
,
T.
, and
Mori
,
T.
,
2016
, “
MVP/GMVP Version3: General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations Based on Continuous Energy and Multigroup Methods (Translated Document)
,” Japan Atomic Energy Agency, Japan, pp.
1
75
.
23.
Sehgal
,
B. R.
,
2012
, “
Accident Progression in the Lower Plenum
,”
Section 2.3 in Nuclear Safety in Light Water Reactors
,
S.
Bal Raj
, ed.,
Academic Press
,
Boston, MA
, pp.
119
145
.
You do not currently have access to this content.