Abstract

Void fraction is one of the most important parameters that affect two-phase flow heat transfer and pressure drop. In this paper, a commercial gamma densitometer and a high-speed X-ray radiography system developed at the University of Michigan (UM) are used to measure the void fraction in two-phase boiling flows, with water as the working fluid, in a tubular test section. The test section is made of Incoloy 800H/HT with a total length of 1.589 m, an inner diameter of 12.95 mm, and a wall thickness of 3.05 mm. These two instrumentation systems are installed on a traversing platform that travels along the vertical test section to perform measurements at multiple elevations. Subcooled flow boiling and natural convection boiling experiments are performed to measure the void fraction in the test section. Flow visualization images are obtained for bubbly and slug flows from the X-ray radiography system. The wall temperature of the test section is measured at 17 elevations by thermocouples. In addition to the experiments, a multiphase computational fluid dynamics (MCFD) model is developed using ansysfluent to simulate the subcooled flow boiling. The measured wall temperature and void fraction from the experiments are compared with the MCFD simulation results. The root-mean-square (RMS) relative deviations are 3.6% and 16.1% for the wall temperature and void fraction, respectively, between the experimental data and MCFD simulations.

References

1.
Takenaka
,
N.
,
Fujii
,
T.
,
Akagawa
,
K.
,
Ono
,
A.
,
Sonoda
,
K.
,
Nishizaki
,
K.
, and
Asano
,
H.
,
1990
, “
Application of Neutron Radiography to Visualization of Multiphase Flows
,”
Flow Meas. Instrum.
,
1
(
3
), pp.
149
156
.10.1016/0955-5986(90)90004-Q
2.
Mishima
,
K.
,
Hibiki
,
T.
, and
Nishihara
,
H.
,
1997
, “
Visualization and Measurement of Two-Phase Flow by Using Neutron Radiography
,”
Nucl. Eng. Des.
,
175
(
1–2
), pp.
25
35
.10.1016/S0029-5493(97)00159-3
3.
Jiang
,
Y.
, and
Rezkallah
,
K. S.
,
1993
, “
An Experimental Study of the Suitability of Using a Gamma Densitometer for Void Fraction Measurements in Gas-Liquid Flow in a Small Diameter Tube
,”
Meas. Sci. Technol.
,
4
(
4
), pp.
496
505
.10.1088/0957-0233/4/4/011
4.
Park
,
H.
, and
Chung
,
C.
,
2007
, “
Design and Application of a Single-Beam Gamma Densitometer for Void Fraction Measurement in a Small Diameter Stainless Steel Pipe in a Critical Flow Condition
,”
Nucl. Eng. Technol.
,
39
(
4
), pp.
349
358
.10.5516/NET.2007.39.4.349
5.
Zhao
,
Y.
,
Bi
,
Q.
,
Yuan
,
Y.
, and
Lv
,
H.
,
2016
, “
Void Fraction Measurement in Steam–Water Two-Phase Flow Using the Gamma Ray Attenuation Under High Pressure and High Temperature Evaporating Conditions
,”
Flow Meas. Instrum.
,
49
, pp.
18
30
.10.1016/j.flowmeasinst.2016.03.002
6.
Heindel
,
T. J.
,
Gray
,
J. N.
, and
Jensen
,
T. C.
,
2008
, “
An X-Ray System for Visualizing Fluid Flows
,”
Flow Meas. Instrum.
,
19
(
2
), pp.
67
78
.10.1016/j.flowmeasinst.2007.09.003
7.
Keplinger
,
O.
,
Shevchenko
,
N.
, and
Eckert
,
S.
,
2017
, “
Validation of X-Ray Radiography for Characterization of Gas Bubbles in Liquid Metals
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
228
, p.
012009
.10.1088/1757-899X/228/1/012009
8.
Mishima
,
K.
,
Hibiki
,
T.
,
Saito
,
Y.
,
Nakamura
,
H.
, and
Matsubayashi
,
M.
,
1999
, “
The Review of the Application of Neutron Radiography to Thermal Hydraulic Research
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
424
(
1
), pp.
66
72
.10.1016/S0168-9002(98)01240-6
9.
Heindel
,
T. J.
,
2011
, “
A Review of X-Ray Flow Visualization With Applications to Multiphase Flows
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
074001
.10.1115/1.4004367
10.
Aliseda
,
A.
, and
Heindel
,
T. J.
,
2021
, “
X-Ray Flow Visualization in Multiphase Flows
,”
Annu. Rev. Fluid Mech.
,
53
(
1
), pp.
543
567
.10.1146/annurev-fluid-010719-060201
11.
Butterworth
,
D.
,
1975
, “
A Comparison of Some Void-Fraction Relationships for Co-Current Gas-Liquid Flow
,”
Int. J. Multiphase Flow
,
1
(
6
), pp.
845
850
.10.1016/0301-9322(75)90038-5
12.
Vijayan
,
P. K.
,
Patil
,
A. P.
,
Pilkhwal
,
D. S.
,
Saha
,
D.
, and
Raj
,
V. V.
,
2000
, “
An Assessment of Pressure Drop and Void Fraction Correlations With Data From Two-Phase Natural Circulation Loops
,”
Heat Mass Transfer
,
36
(
6
), pp.
541
548
.10.1007/s002310000108
13.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
,
2007
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
,
33
(
4
), pp.
347
370
.10.1016/j.ijmultiphaseflow.2006.09.004
14.
Godbole
,
P. V.
,
Tang
,
C. C.
, and
Ghajar
,
A. J.
,
2011
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Upward Vertical Two-Phase Flow
,”
Heat Transfer Eng.
,
32
(
10
), pp.
843
860
.10.1080/01457632.2011.548285
15.
Gu
,
J.
,
Wang
,
Q.
,
Wu
,
Y.
,
Lyu
,
J.
,
Li
,
S.
, and
Yao
,
W.
,
2017
, “
Modeling of Subcooled Boiling by Extending the RPI Wall Boiling Model to Ultra-High Pressure Conditions
,”
Appl. Therm. Eng.
,
124
, pp.
571
584
.10.1016/j.applthermaleng.2017.06.017
16.
Ahammad
,
M.
,
Liu
,
Y.
,
Olewski
,
T.
,
Véchot
,
L. N.
, and
Mannan
,
M. S.
,
2016
, “
Application of Computational Fluid Dynamics in Simulating Film Boiling of Cryogens
,”
Ind. Eng. Chem. Res.
,
55
(
27
), pp.
7548
7557
.10.1021/acs.iecr.6b01013
17.
Novosád
,
J.
,
Peukert
,
P.
,
Pomp
,
N.
, and
Klouček
,
P.
,
2020
, “
CFD Simulation of the Multiphase Heat Transfer During the Quenching Process
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
723
(
1
), p.
012022
.10.1088/1757-899X/723/1/012022
18.
Liu
,
Q.
,
Lv
,
Q.
,
Shi
,
S.
,
Sun
,
X.
, and
Kelly
,
J.
,
2016
, “
Design of Post-CHF Heat Transfer Experiments for High-Pressure and High-Flow Conditions
,” Proceedings of the International Congress on Advances in Nuclear Power Plants (
ICAPP 2016
), San Francisco, CA, Apr. 17–20, pp 2229–2245.https://www.researchgate.net/publication/294732058_Design_of_Post-CHF_Heat_Transfer_Experiments_for_High-pressure_and_Highflow_Conditions
19.
Liu
,
Q.
,
Shi
,
Q.
,
Sun
,
X.
, and
Kelly
,
J.
,
2018
, “
Thermal Hydraulic Performance Analysis of a Post-CHF Heat Transfer Test Facility
,”
Nucl. Eng. Des.
,
339
, pp.
53
64
.10.1016/j.nucengdes.2018.08.020
20.
Liu
,
Q.
,
Sun
,
H.
,
Liu
,
Y.
,
Kelly
,
J.
, and
Sun
,
X.
,
2021
, “
Experimental Study of Post-CHF Heat Transfer in a Vertical Tubular Test Section
,”
Int. J. Heat Mass Transfer
,
166
, p.
120697
.10.1016/j.ijheatmasstransfer.2020.120697
21.
Adams
,
R.
,
Petrov
,
V.
, and
Manera
,
A.
,
2017
, “
Advanced High-Resolution Radiation-Based Imaging Techniques for Detailed Void Fraction Measurements in High-Pressure Flow Loops
,”
Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17)
, Xi'an, China, Sept. 3–9, Paper No. N6P203.
22.
Kurul
,
N.
, and
Podowski
,
M. Z.
,
1991
, “
On the Modeling of Multidimensional Effects in Boiling Channels
,”
Proceedings of the 27th National Heat Transfer Conference
, Minneapolis, MN, July 28–31, pp. 30−40.
23.
Lemmert
,
M.
,
Chawla
,
J. M.
,
Hahne
,
E.
, and
Grigull
,
U.
,
1977
, “
Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient
,”
Heat Transfer in Boiling
,
Hemisphere
,
Washington, DC
, pp.
237
247
.
24.
Tolubinsky
,
V. I.
, and
Kostanchuk
,
D. M.
,
1970
, “
Vapour Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling
,”
Proceedings of the Fourth International Heat Transfer Conference
,
Paris-Versailles, France
, Aug. 31–Sept. 5, Paper No. B2.8.
25.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
.10.1002/aic.690060405
26.
Ishii
,
M.
,
1990
, “
Two-Fluid Model for Two-Phase Flow
,”
Multiphase Sci. Technol.
,
5
(
1–4
), pp.
1
58
.10.1615/MultScienTechn.v5.i1-4.10
27.
Moraga
,
F. J.
,
Bonetto
,
F. J.
, and
Lahey
,
R. T.
,
1999
, “
Lateral Forces on Spheres in Turbulent Uniform Shear Flow
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1321
1372
.10.1016/S0301-9322(99)00045-2
28.
Antal
,
S. P.
,
Lahey
,
R. T.
, Jr.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.10.1016/0301-9322(91)90029-3
29.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J.
,
2004
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multiphase Flows
,”
Proceedings of the Fifth International Conference on Multiphase Flow (ICMF 2004)
, Yokohama, Japan, May 30–June 4, Paper No. 392.
30.
Diaz
,
J.
,
Liu
,
Q.
,
Petrov
,
P.
,
Manera
,
A.
, and
Sun
,
X.
,
2022
, “
High-Resolution X-Ray Radiography Methods Developed for Post-CHF Experiment
,”
Proceedings of the 19th International Meeting on Nuclear Reactor Thermal Hydraulics (NURETH 19)
, The Square, Brussels, Belgium, Mar. 6, Paper No. 35375.
You do not currently have access to this content.