Abstract

A fundamental contemporary theory, the Leishear explosion theory, explains major explosions at Three Mile Island and Fukushima Daiichi. Focusing on the Fukushima Daiichi explosions as well as many small nuclear power plant explosions, auto-ignited explosions hammered the largest seismic response at Unit 1 on Mar. 12, 2011. At Unit 3 on Mar. 14, a visibly larger explosion ignited with an observed fireball and smoke cloud but lower seismic forces. On Mar. 15, a Unit 2 reactor system explosion ignited hydrogen in the Unit 4 reactor building to cause damages following ignition, and seismic responses were negligible. Note that a Unit 2 reactor building explosion did not occur, and this fact is questionably attributed to the destructive removal of one of the walls of Unit 2 due to the earlier Unit 1 explosion. All of these explosions were ignited by fluid transients that exploded flammable hydrogen that was created during nuclear reactor core meltdowns, which were initiated by loss of power due to a tsunami. The conclusions presented here build upon earlier publications, where fluid transients auto-ignite hydrogen to explode buildings. In addition, research from Argonne National Laboratory provides background to explain this common cause for nuclear power plant explosions. Although different than the Argonne report conclusions, conclusions here are consistent with observations provided by the Argonne report. New ideas challenge existing beliefs, but the stakes are high since nuclear reactor safety is important to prevent loss of life and catastrophic environmental damages. The next nuclear power plant explosion can be stopped!

References

1.
Leishear
,
R.
,
2020
, “
The Autoignition of Nuclear Power Plant Explosions
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
1
), p.
22
.10.1115/1.4044807
2.
Leishear
,
R.
,
2021
,
Nuclear Power Plants Are Not so Safe: Fluid Transients/Water Hammers, Autoignition, Explosions, Accident Predictions and Ethics
,
International Journal of Philosophy, Science Publishing Group
,
New York
, pp.
1
51
.
3.
IAEA
,
2015
,
The Fukushima Daiichi Accident, Technical Volume 1, Description and Context of the Accident
,
International Atomic Energy Agency
,
Vienna, Austria
, pp.
1
1254
.
4.
Herranz
,
L.
,
Pellegrini
,
M.
,
Lind
,
T.
,
Sonnenkalb
,
M.
,
Godin-Jacqmin
,
L.
,
López
,
C.
,
Dolganov
,
K.
,
Cousin
,
F.
,
Tamaki
,
H.
,
Kimi
,
T.
,
Hoshi
,
H.
,
Andrews
,
N.
, and
Sevon
,
T.
,
2020
,
Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi NPS (BSAF) Phase 2
Results of Severe Accident Analyses for Unit 1
,
Elsevier Press
,
Amsterdam, Netherlands
, pp.
1
7
.
5.
Lind
,
T.
,
Pellegrini
,
M.
,
Herranz
,
L.
,
Sonnenkalb
,
M.
,
Nishi
,
Y.
,
Tamaki
,
H.
,
Cousin
,
F.
,
Moguel
,
L.
,
Andrews
,
L. N.
, and
Sevon
,
T.
,
2021
,
Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi NPS (BSAF), Phase 2
Results of Severe Accident Analyses for Unit 3
,
Elsevier Press
,
Amsterdam, Netherlands
, pp.
1
12
.
6.
Albright
,
L.
,
Amway
,
P.
,
Andrews
,
N.
,
Basu
,
S.
,
Bolger
,
F.
,
Bunt
,
R.
,
Cibula
,
M.
,
Corradini
,
M.
,
Ellison
,
P.
,
Farmer
,
M.
,
Gabor
,
J.
,
Gauntt
,
R.
,
Hoshi
,
H.
,
Ito
,
S.
,
Iwanaga
,
K.
,
Kirkland
,
K.
,
Klass
,
K.
,
Kikuchi
,
W.
,
Kobayashi
,
T.
,
Kojo
,
R.
,
Koyama
,
S.
,
Kraft
,
S.
,
Kurata
,
M.
,
Linthicum
,
R.
,
Luangdilok
,
W.
,
Luxat
,
D.
,
Martin
,
R.
,
McMinn
,
P.
,
Mizokami
,
S.
,
Nakano
,
J.
,
Nakayoshi
,
A.
,
Nudi
,
M.
,
Okamoto
,
T.
,
Paik
,
C.
,
Plys
,
M.
,
Rempe
,
J.
,
Robb
,
K.
,
Taira
,
M.
,
Tanoue
,
H.
,
Voelsing
,
K.
,
Wachowiak
,
R.
,
Washiya
,
T.
,
Whiteman
,
P.
,
Williamson
,
B.
, and
Yasui
,
M.
,
2021
, “
U.S. Effort Support to Examinations at Fukushima—November 2020 Meeting Notes Meeting Notes With Updated Information Requests
,”
Argonne National Laboratory
, Argonne, IL, Report No. ANL-20-79, pp. 1–
297
.
7.
Yamanaka
,
Y.
,
Mizokami
,
S.
,
Watanabe
,
M.
, and
Honda
,
T.
,
2013
,
Update of the First Tepco MAAP Accident Analysis of Units 1, 2, and 3 at Fukushima Daiichi Nuclear Power Station
,
Taylor and Francis
,
Nuclear Engineering
, London, UK, pp.
262
279
.
8.
Luangdilok
,
W.
,
2020
,
The Explosions at Fukushima Daiichi Unit 3 and Unit 4 and Implications on the Evaluation of 1F3 Accident
,
Elsevier Press
,
Amsterdam, Netherlands
, pp.
1
10
.
9.
Sevón
,
T.
,
2020
,
Analysis of Reactor Water Level Measurements During the Fukushima Unit 2 Accident
,
Elsevier Press
,
Amsterdam, Netherlands
, pp.
1
6
.
10.
Templeton
,
D.
,
Ford
,
S. R.
,
Rodgers
,
A.
,
Harben
,
P.
,
Ramirez
,
A.
,
Foxall
,
W.
, and
Reinke
,
R.
,
2017
,
Seismic Models for Near-Surface Explosion Yield Estimation in Alluvium and Sedimentary Rock, LLNL-JRNL-725844, Lawrence Livermore National Laboratory, Livermore, California,
pp.
1
64
.
11.
Federal Highway Administration
,
2010
, “
Soils and Foundations, Reference Manual
,” Vol.
1
, Federal Highway Administration, Washington, DC, pp.
1
14
.
12.
Stein
,
S.
, and
Wysession
,
M.
,
2003
,
An Introduction to Seismology, Earthquakes, and Earth Structure
,
Blackwell Publishing
, Oxford, UK, pp.
1
498
.
13.
Dowling
,
A.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Sci. Direct
,
35
(
1
), pp.
65
91
.10.1016/j.proci.2014.08.016
14.
Japanese Nuclear Regulatory Authority,
2021
, “
TEPCO Fukushima Daiichi Nuclear Power Station: Interim Report on Accident Investigation and Analysis—Examination
from September 2019 to January 2021,” Japanese Nuclear Regulatory Authority, accessed Apr. 3, 2021, https://www.nsr.go.jp/data/000340925.pdf and attachment https://www.nsr.go.jp/data/000340926.pdf, January 26, (in Japanese).
15.
Cooper
,
P. W.
,
1997
,
Explosives Engineering
,
Wiley-VCH
,
New York
, pp.
1
451
.
16.
Xiao
,
J.
,
Breitung
,
W.
,
Kuznetsov
,
M.
,
Zhang
,
H.
,
Travis
,
J.
,
Redlinger
,
R.
, and
Jordan
,
T.
,
2017
, “
GASFLOW-MPI: A New 3-D Parallel All-Speed CFD Code for Turbulent Dispersion and Combustion Simulations Part II: First Analysis Hydrogen Explosion in Fukushima Daiichi Unit 1
,”
Elsevier Press
,
Amsterdam, Netherlands
, pp.
8369
8381
.10.1016/j.ijhydene.2017.01.219
17.
Brower
,
M.
,
2012
, “
Ignition Delay Times of Natural Gas/Hydrogen Blends at Elevated Pressures
,” Master's thesis,
Texas A&M University
, pp.
1
112
.
18.
Schefer
,
R. W.
,
Kulatilaka
,
W. D.
,
Patterson
,
B. D.
, and
Settersten
,
T. B.
,
2009
, “
Visible Emission of Hydrogen Flames
,”
Elsevier Press
,
Amsterdam, Netherlands
, pp.
1234
1241
.10.1016/j.combustflame.2009.01.011
19.
Nuclear and Industrial Safety Agency
,
2002
,
Investigation Report on Pipe Rupture Incident at Hamaoka Nuclear Power Station Unit-1 (English)
,
Ministry of Economy, Trade and Industry
,
Tokyo, Japan
.
20.
Leishear
,
R.
,
2017
, “
Nuclear Power Plant Fires and Explosions, II
,”
ASME
Paper No. PVP2017-66278.10.1115/PVP2017-66278
21.
Hoffmann
,
P.
,
1999
, “
Current Knowledge on Core Degradation Phenomena, A Review
,”
J. Nucl. Mater.
,
270
(
1–2
), pp.
194
211
.10.1016/S0022-3115(98)00899-X
22.
Haste
,
T.
,
Steinbrück
,
M.
,
Barrachin
,
M.
,
de Luze
,
O.
,
Grosse
,
M.
, and
Stuckert
,
J.
,
2015
, “
A Comparison of Core Degradation Phenomena in the CORA, QUENCH, Phébus SFD and Phébus FP Experiments
,”
Nucl. Eng. Des.
,
283
, pp.
8
20
.10.1016/j.nucengdes.2014.06.035
23.
Abe
,
Y.
, and
Saito
,
S.
,
2017
,
Vapor Explosion Between High-Temperature Molten Liquid Droplet and Water Pool
,
ResearchGate, Berlin, Germany
.
24.
Fauske
,
H.
, and
Henry
,
R.
,
2017
,
Experimental Technical Bases for Evaluating Vapor/Steam Explosions in Nuclear Reactor Safety
,
American Nuclear Society
,
LeGrange Park, IL
, pp.
1
390
.
25.
Yamano
,
N.
,
Sugimoto
,
J.
,
Maruyama
,
Y.
, and
Soda
,
K.
,
1994
, “Studies on Fuel-Coolant Interactions During Core Melt Accident of Nuclear Power Plants,”
ResearchGate, Berlin, Germany
.
26.
Song
,
J. H.
,
Hong
,
S. W.
,
Kim
,
J. H.
,
Chang
,
Y. J.
,
Shin
,
Y. S.
,
Min
,
B. T.
, and
Kim
,
H. D.
,
2003
, “
Insights From the Reactor Steam Explosion Experiments in TROI
,”
Nucl. Sci. Technol.
,
40
(
10
), pp.
783
795
.10.1080/18811248.2003.9715420
27.
Wang
,
S.
,
Blomquist
,
C.
,
Spencer
,
B.
,
McCumber
,
L.
, and
Tosa
,
M.
,
1991
, “
Experimental Study of the Fragmentation and Quench Behavior of Corium Melts in Water
,” Argonne National Laboratory, Argonne, IL, pp.
1
16
.
28.
John
,
J.
,
1984
,
Gas Dynamics
,
Allyn and Bacon
,
Newton, MA
, pp.
1
426
.
29.
Huhtiniemi
,
I.
,
Hohman
,
H.
, and
Magallon
,
D.
,
1997
, “
FCI Experiments in the Corium: Water System
,”
Nucl. Eng. Des.
,
177
(
1–3
), pp.
339
349
.10.1016/S0029-5493(97)00202-1
30.
Magallon
,
D.
, and
Hohmann
,
H.
,
1995
, “
High Pressure Corium Melt Quenching Tests in Faro
,”
Nucl. Eng. Des.
,
155
(
1–2
), pp.
253
270
.10.1016/0029-5493(94)00876-Z
31.
Magallon
,
D.
, and
Hohmann
,
H.
,
1997
, “
Experimental Investigation of 150-kg-Scale Corium Melt Jet Quenching in Water
,”
Nucl. Eng. Des.
,
177
(
1–3
), pp.
321
337
.10.1016/S0029-5493(97)00201-X
32.
Fuketa
,
M.
,
Yamano
,
M.
, and
Inoue
,
A.
,
1994
, “
Studies on Fuel-Coolant Interactions During a Reactivity Initiated Accident at a Nuclear Power Plant
,”
Proceedings of the Committee on the Safety of Nuclear Installations Specialists Meting on Fuel-Coolant Interactions
, NUREG/CP-0127, NEA/CSNI/R(93)8, Santa Barbara, CA, pp.
282
295
.
33.
Ohta
,
T.
,
2009
, “
Energy Carriers and Conversion Systems With Emphasis on Hydrogen
,”
Encyclopedia of Life Support Systems
,
Yokohama National University
,
Kamakura, Japan
, pp.
131
146
.
34.
Glassman
,
I.
,
Yetter
,
R.
, and
Glumac
,
N.
,
2015
,
Combustion
,
Elsevier Press
,
Amsterdam, The Netherlands, Waltham, MA
, pp.
1
758
.
35.
Mueller
,
M.
,
Yetter
,
R.
, and
Dryer
,
F.
,
1992
,
Flow Reactor Studies and Kinetic Modeling of the H2/O2 Reaction, Major Research Topics in Combustion, International Journal of Chemical Kinetics
,
Springer-Verlag
,
New York
.
36.
Funk
,
J.
,
2001
, “
Thermochemical Hydrogen Production: Past and Present
,”
Int. J. Hydrogen Energy
,
26
, pp.
185
190
.10.1016/S0360-3199(00)00062-8
37.
Boudesocque
,
N.
,
Vandensteendam
,
C.
,
Lafon
,
C.
,
Girold
,
C.
, and
Baronnet
,
J.
,
2006
, “
Hydrogen Production by Thermal Water Splitting Using a Thermal Plasma
,”
World Hydrogen Energy Conference
, WHEC 16, June 13–16, Lyon France, pages, pp.
1
11
.
38.
Harvard University, 2022, “α, β, γ Penetration and Shielding,”” Cambridge, MA, accessed Mar. 31, 2022, https://sciencedemonstrations.fas.harvard.edu/presentations/%CE%B1-%CE%B2-%CE%B3-penetration-and-shielding
39.
Hanson, R., Spearrin, M., and Goldenstein, C., 2016, Spectroscopy and Optical Diagnostics for Gases, Springer, New York.
40.
Noémi, J., Nagy, M., 2018, Cherenkov Radiation, Nuclear and Radiochemisstry, Elsevier Press, Amsterdam, The Netherlands.
41.
Mattox
,
T.
, and
Mangan
,
M.
,
1997
, “
Littoral Hydrovolcanic Explosions: A Case Study of Lava–Seawater Interaction at Kilauea Volcano
,”
J. Volcanol. Geotherm. Res.
,
75
(
1–2
), pp.
1
7
.10.1016/S0377-0273(96)00048-0
42.
Leishear
,
R.
,
2010
,
Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Pipe Systems, Pressure Vessel and Piping Conference, J Pressure Vessel
,
ASME
,
New York
, pp.
1
20
.
43.
Piguet
,
F.
,
Pierre
,
E.
,
Claudio
,
K.
,
Bastien
,
D.
,
Walter
,
W.
, and
Gregory
,
G.
,
2019
, “
Modeling of a Major Accident in Five Nuclear Power Plants From 365 Meteorological Situations in Western Europe and Analysis of the Potential Impacts on Populations
,”
Soils and Affected Countries
,
University of
,
Geneva, Switzerland
, pp.
1
74
.
You do not currently have access to this content.