Abstract

The ageing of the nuclear installations induces new challenges regarding the containment of radioactive matter especially airborne contamination. The purification of the air using fibrous filters is the most widely used technology for the containment of this contamination. However, to ensure their role, they need to be protected. The release of incandescent particles cutting processes could reduce their efficiency. Many spark arrestors are available to protect the filters from hot particles. They are designed to be implemented upstream the filter. Three technologies of spark arrestors have been tested when they are exposed to a grinder or a plasma cutting process. The experiments have been performed for two different filters (450 and 1500 m3/h flow rate). The particle size distribution of the aerosol produced by a plasma torch cutting has been measured and shows two characteristic modes for this kind of generation process. The filtration efficiency of the high efficiency particulate air (HEPA) filter has been measured before and after the cutting (NF-EN-ISO-16170). During the experiments, the pressure drop of the HEPA filters has been measured to estimate their clogging rate. Results show that the plasma cutting is a more penalizing cutting process compared to metal grinder and that the metallic fibrous medium with the finest mesh has the better performance to protect filters from sparks. The cut length and the distance between the filter and the spark arrestor have also been studied, showing a limited impact on the degradation of the filtration efficiency.

References

1.
Artous
,
S.
,
Norvez
,
O.
, and
Teppe
,
A. L.
,
2011
, “
Etude De L'impact D'étincelles Produites Par Une Disqueuse Sur L'efficacité De Filtres THE
,” IRSN, Report No. IRSN/DSU/SERAC/LECEV/11-32.
2.
CETIER
,
P.
,
1989
, “
Caractérisation Des Transferts De Contaminants Lors Des Découpes Thermiques Et Mécaniques D'échantillons Métalliques
,” Ph. D. thesis,
Conservatoire National des Arts et Metiers
.
3.
Bach
,
F. W.
,
Steiner
,
H.
,
Schreck
,
G.
, and
Pilot
,
G.
,
1993
, “
Analysis of Results Obtained With Different Cutting Techniques and Associated Filtration Systems for the Dismantling of Radioactive Metallic Components
,” Commission of the European Communities, Report No. EUR 14213.
4.
Laborde
,
J. C.
,
1996
, “
Performances De Dispositifs De Protection Des Filtres the Contre Les Aérosols Incandescents
,” IRSN, Report No. IRSN/DSU/SERAC/LECEV/96-21.
5.
Marchal
,
P.
, and
Porcheron
,
E.
,
2014
, September-October. “
R&D: Impact Des Particules Incandescentes Dans Les Réseaux De Ventilation
,”
Revue Générale Nucléaire
,
5
, pp.
55
59
.10.1051/rgn/20145055
6.
Marchal
,
P.
,
Porcheron
,
E.
,
Grehan
,
G.
,
Lafanechere
,
L.
,
Walter
,
J.
, and
Gelain
,
T.
,
2015
, “
Characterization of Incandescent Particles Emitted by a Cut-Off Grinder During Decommissioning Operations for Evaluating Filter Degradation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
2
), p.
021005
.10.1115/1.4029343
7.
Marchal
,
P.
,
Porcheron
,
E.
,
Lafanechere
,
L.
,
Walter
,
J.
, and
Grehan
,
G.
,
2013
, “
Incandescent Particle Characterisation Emitted by a Cut-Off Wheel Grinder During Decommissioning Operations for Evaluating Filters Degradation
,”
ASME
Paper No. ICONE21-15353.10.1115/ICONE21-15353
8.
Newton
,
G. J.
,
Hoover
,
M. D.
,
Barr
,
E. D.
,
Wong
,
B. A.
, and
Ritter
,
P. D.
,
1987
, “
Collection and Characterization of Aerosols From Metal Cutting Techniques Typically Used in Decommissioning Nuclear Facilities
,”
Am. Ind. Hygiene Assoc. J.
,
48
(
11
), pp.
922
932
.10.1080/15298668791385822
9.
Pilot
,
G.
,
Fauvel
,
S.
,
Gosse
,
X.
,
Dinechin
,
G.
, and
Vernhet
,
D.
,
2006
, “
Dismantling of Evaporators by Laser Cutting: Measurement of Secondary Emissions
,”
ASME
Paper No. ICONE14-89709.10.1115/ICONE14-89709
10.
Hoover
,
M. D.
,
Newton
,
G. J.
,
Barr
,
E. D.
, and
Wong
,
B. A.
,
1982
, “
Aerosols From Metal Cutting Techniques Typical of Decommissioning Nuclear facilities - Inhalation Hazards and Worker Protection
,” DOE
International Decommissioning Symposium
, Seattle, WA, Oct. 10–14, p.
15002072
.
11.
NF EN 1822-1
April,
2019
, “
Filtre à Air à Très Haute Efficacité (EPA, HEPA Et ULPA) – Partie 1: Classification Essais De Performance Et Marquage
”.
12.
Specification for filters used for nuclear applications, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/CTHEN n° 93-030,
2020
.
13.
ISO 16170:
2016
Méthode d'essai in situ pour les systèmes filtrants à très haute efficacité dans les installations industrielles
”.
14.
Cetegen
,
B. M.
, and
Yu
,
W.
,
1999
, “
In-Situ Particle Temperature, Velocity and Size Measurements in DC Arc Plasma Thermal Sprays
,”
J. Therm. Spray Technol.
,
8
(
1
), pp.
57
67
.10.1361/105996399770350575
15.
Bishop
,
A.
,
1989
, “
Ventilation and Filtration Techniques for Handling Aerosols Produced by Thermal Cutting Operations
,” Commission of the European Communities, Report No. EUR 12321.
16.
Charvet
,
A.
,
Pacault
,
S.
,
Bourrous
,
S.
, and
Thomas
,
D.
,
2018
, “
Association of Fibrous Filters for Aerosol Filtration in Predominant Brownian Diffusion Conditions
,”
Sep. Purif. Technol.
,
207
, pp.
420
426
.10.1016/j.seppur.2018.06.045
17.
Paidassi
,
J.
,
1958
, “
The Kinetics of the Air Oxidation of Iron in the Range 700-1250 °C
,”
Acta Metall.
,
6
(
3
), pp.
184
194
.10.1016/0001-6160(58)90006-3
You do not currently have access to this content.