Abstract

Wall functions are generally used in a turbulent analysis with a computational fluid dynamics (CFD) code and large computation cells. The logarithmic law based on the analogy between momentum, energy, and mass transfer is widely used in wall functions for turbulent flows, but its validity in the turbulent boundary layer has not been confirmed for dimensionless profiles of temperature and steam mass fraction in flows of steam and noncondensable gases. In this article, therefore, we evaluated dimensionless profiles of temperature and steam mass fraction in flows of steam and air on a flat plate by using existing data. From the heat and mass transfer equations at the condensation surface based on the gradient of temperature or steam mass fraction, we showed that the convection heat flux qconv (which is used for the definition of the dimensionless temperature T+) should include the term of condensate mass flux ms and that the dimensionless steam mass fraction Ys+ should be a function of the dimensionless distance y+ (= uτ y/ν where uτ is the friction velocity), the Schmidt number Sc and the air mass fraction (1−Xs). Values obtained from the newly defined T+ and Ys+ and the existing data agreed relatively well with the linear function near the viscous sublayer (a few data points were there) but were much smaller than the existing logarithmic law due to condensation in the turbulent boundary layer (i.e., mist generation). On the other hand, the T+ and Ys+ values obtained by using the local Nusselt number Nuy and the local Sherwood number Shy (which were proposed in our previous study), respectively, agreed well with the logarithmic law.

References

1.
de la Rosa
,
J. C.
,
Escrivá
,
A.
,
Herranz
,
L. E.
,
Cicero
,
T.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Review on Condensation on the Containment Structure
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
.10.1016/j.pnucene.2008.01.003
2.
Studer
,
E.
,
Abdo
,
D.
,
Benteboula
,
S.
,
Bernard-Michel
,
G.
,
Cariteau
,
B.
,
Coulon
,
N.
,
Dabbene
,
F.
,
Debesse
,
P.
,
Koudriakov
,
S.
,
Ledier
,
C.
,
Magnaud
,
J.-P.
,
Norvez
,
O.
,
Widloecher
,
J.-L.
,
Beccantini
,
A.
,
Gounand
,
S.
, and
Brinster
,
J.
,
2020
, “
Challenges in Containment Thermal Hydraulics
,”
Nucl. Technol.
,
206
(
9
), pp.
1361
1373
.10.1080/00295450.2020.1731406
3.
Green
,
J.
, and
Almenas
,
K.
,
1996
, “
An Overview of the Primary Parameters and Methods for Determining Condensation Heat Transfer to Containment Structures
,”
Nucl. Saf.
,
37
(
1
), pp.
26
48
.
4.
Huang
,
J.
,
Zhang
,
J.
, and
Wang
,
L.
,
2015
, “
Review of Vapor Condensation Heat and Mass Transfer in the Presence of Non-Condensable Gas
,”
Appl. Therm. Eng.
,
89
, pp.
469
484
.10.1016/j.applthermaleng.2015.06.040
5.
Yadav
,
M. K.
,
Khandekar
,
S.
, and
Sharma
,
P. K.
,
2016
, “
An Integrated Approach to Steam Condensation Studies Inside Reactor Containments: A Review
,”
Nucl. Eng. Des.
,
300
, pp.
181
209
.10.1016/j.nucengdes.2016.01.004
6.
Dehbi
,
A.
,
Janasz
,
F.
, and
Bell
,
B.
,
2013
, “
Prediction of Steam Condensation in the Presence of Noncondensable Gases Using a CFD-Based Approach
,”
Nucl. Eng. Des.
,
258
, pp.
199
210
.10.1016/j.nucengdes.2013.02.002
7.
Vyskocil
,
L.
,
Schmid
,
J.
, and
Macek
,
J.
,
2014
, “
CFD Simulation of Air–Steam Flow With Condensation
,”
Nucl. Eng. Des.
,
279
, pp.
147
157
.10.1016/j.nucengdes.2014.02.014
8.
Kelm
,
S.
,
Muller
,
H.
,
Hundhausen
,
A.
,
Druska
,
C.
,
Kuhr
,
A.
, and
Allelein
,
H.-J.
,
2019
, “
Development of a Multi-Dimensional Wall-Function Approach for Wall Condensation
,”
Nucl. Eng. Des.
,
353
, p.
110239
.10.1016/j.nucengdes.2019.110239
9.
Vijaya Kumar
,
G.
,
Cammiade
,
L. M.
,
Kelm
,
S.
,
Arul Prakash
,
K.
,
Groß
,
E. M.
,
Allelein
,
H.-J.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2021
, “
Implementation of a CFD Model for Wall Condensation in the Presence of Non-Condensable Gas Mixtures
,”
Appl. Therm. Eng.
,
187
, p.
116546
.10.1016/j.applthermaleng.2021.116546
10.
Kelm
,
S.
,
Kampili
,
M.
,
Liu
,
X.
,
George
,
A.
,
Schumacher
,
D.
,
Druska
,
C.
,
Struth
,
S.
,
Kuhr
,
A.
,
Ramacher
,
L.
,
Allelein
,
H.-J.
,
Prakash
,
K. A.
,
Kumar
,
G. V.
,
Cammiade
,
L. M. F.
, and
Ji
,
R.
,
2021
, “
The Tailored CFD Package ‘ContainmentFOAM’ for Analysis of Containment Atmosphere Mixing, H2/CO Mitigation and Aerosol Transport
,”
Fluids
,
6
(
3
), p.
100
.10.3390/fluids6030100
11.
Legay-Desesquelles
,
F.
, and
Prunet-Foch
,
B.
,
1986
, “
Heat and Mass Transfer With Condensation in Laminar and Turbulent Boundary Layers Along a Flat Plate
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
95
105
.10.1016/0017-9310(86)90038-4
12.
Kang
,
H. C.
, and
Kim
,
M. H.
,
1999
, “
Characteristics of Film Condensation of Super-Saturated Steam-Air Mixture on a Flat Plate
,”
Int. J. Multiphase Flow
,
25
(
8
), pp.
1601
1618
.10.1016/S0301-9322(98)00077-9
13.
Murase
,
M.
,
Utanohara
,
Y.
,
Goda
,
R.
,
Shimamura
,
T.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2019
, “
Measurements of Temperature Distributions and Condensation Heat Fluxes for Downward Flows of Steam-Air Mixture in a Circular Pipe
,”
Jpn. J. Multiphase Flow
,
33
(
4
), pp.
405
416
.10.3811/jjmf.2019.012
14.
Murase
,
M.
,
Utanohara
,
Y.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2020
, “
Condensation Heat Transfer for Downward Flows of Steam-Air Mixture in a Circular Pipe
,”
Jpn. J. Multiphase Flow
,
34
(
4
), pp.
510
519
.10.3811/jjmf.2020.029
15.
Akaki
,
H.
,
Kataoka
,
Y.
, and
Murase
,
M.
,
1995
, “
Measurement of Condensation Heat Transfer Coefficient Inside a Vertical Tube in the Presence of Noncondensable Gas
,”
J. Nucl. Sci. Technol.
,
32
(
6
), pp.
517
526
.10.1080/18811248.1995.9731739
16.
Liao
,
Y.
, and
Vierow
,
K.
,
2007
, “
A Generalized Diffusion Layer Model for Condensation of Vapor With Noncondensable Gases
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
8
), pp.
988
994
.10.1115/1.2728907
17.
Murase
,
M.
,
Utanohara
,
Y.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2021
, “
Prediction Method of Condensation Heat Transfer From Steam-Air Mixture for CFD Application
,”
Jpn. J. Multiphase Flow
,
35
(
3
), pp.
453
462
.10.3811/jjmf.2021.028
18.
Murase
,
M.
,
Utanohara
,
Y.
,
Goda
,
R.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2021
, “
Condensation Heat Transfer for Downward Flows of Superheated Steam-Air Mixture in a Circular Pipe
,”
Nucl. Eng. Des.
,
371
, p.
110948
.10.1016/j.nucengdes.2020.110948
19.
Murase
,
M.
,
Utanohara
,
Y.
, and
Tomiyama
,
A.
,
in press
, “
Prediction Method for Condensation Heat Transfer in the Presence of Non-Condensable Gas for CFD Applications
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
8
(
3
), p. 031404.10.1115/1.4053051
20.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
21.
Johnson
,
H. A.
, and
Rubesin
,
M. W.
,
1949
, “
Aerodynamic Heating and Convection Heat Transfer – Summary of Literature Survey
,”
Trans. Am. Soc. Mech. Eng.
,
71
(
5
), pp.
447
456
.
You do not currently have access to this content.