Abstract

Reproduction of turbulent flow and heat transfer inside a pressurized water reactor (PWR) fuel assembly is a challenging task due to the complex geometry and the huge computational domain. Capability of a wall-modeled Reynolds-averaged Navier–Stokes (RANS) simulation approach has been examined, which had already been validated against the measurements of the MATiS-H experiment. The method is here expanded to a larger computational domain aiming to reproduce flow and thermal field in the entire PWR fuel assembly. Namely, in the first part of this study, wall-modeled RANS is performed in a relatively short section of the representative PWR fuel assembly containing one single mixing grid with an array of 15 × 15 fuel rods. Linear and nonlinear eddy-viscosity turbulence models have been applied; however no significant difference is observed in the predicted pressure drop in the fuel assembly. The obtained predictions revealed an interesting pattern of swirl flow as well as diagonal cross flow downstream the mixing grid, which is driven by the applied design of split-type mixing vanes. In the second part, the computational model is extended to a domain representative of a complete PWR fuel assembly with ten mixing grids, inlet and outlet sections. Pressure drop and flow field are analyzed together with the predicted temperature and potential hot spots. In spite of a relatively coarse spatial resolution of the applied approach, the wall-modeled RANS provided promising results at least for the qualitative prediction of the pressure, flow field, and location of hot spots.

References

1.
Agbodemegbe
,
V. Y.
,
Cheng
,
X.
,
Akaho
,
E. H. K.
, and
Allotey
,
F. K. A.
,
2015
, “
Correlation for Cross-Flow Resistance Coefficient Using STAR-CCM+ Simulation Data for Flow of Water Through Rod Bundle Supported by Spacer Grid With Split-Type Mixing Vane
,”
Nucl. Eng. Des.
,
285
, pp.
134
149
.10.1016/j.nucengdes.2015.01.003
2.
Agbodemegbe
,
V. Y.
,
Cheng
,
X.
,
Akaho
,
E. H. K.
, and
Allotey
,
F. K. A.
,
2016
, “
An Investigation of the Effect of Split-Type Mixing Vane on Extent of Crossflow Between Subchannels Through the Fuel Rod Gaps
,”
Ann. Nucl. Energy
,
88
, pp.
174
185
.10.1016/j.anucene.2015.10.036
3.
Batta
,
A.
, and
Class
,
A. G.
,
2012
, “
CFD (Computational Fluid Dynamics) Study of Isothermal Water Flow in Rod Bundles With Split-Type Spacer Grids: OECD/NEA Benchmark
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-4)
,
Daejeon, South Korea
, Sept. 10–12, Paper No. P1#3, p.
16
.
4.
Bieder
,
U.
,
2012
, “
Analysis of the Flow Down- and Upwind of the Split Type Mixing Vanes
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-4)
,
Daejeon, South Korea
, Sept. 10–12, Paper No. S04#2, p.
13
.
5.
Capone
,
L.
,
Hassan
,
Y. A.
, and
Benhamadouche
,
S.
,
2013
, “
Large Eddy Simulation for 5 × 5 MaTiS-H Fuel Bundle Configuration Using the Split Vanes With Code_Saturne
,”
Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15)
,
Pisa, Italy
, May 12–17, Paper No. 673, p.
12
.
6.
Chang
,
S.-K.
,
Kim
,
S.
, and
Song
,
C.-H.
,
2014
, “
Turbulent Mixing in a Rod Bundle With Vaned Spacer Grids: OECD/NEA-KAERI CFD Benchmark Exercise Test
,”
Nucl. Eng. Des.
,
279
, pp.
19
36
.10.1016/j.nucengdes.2014.05.013
7.
Chang
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Hybrid Simulations of the Near Field of a Split-Vane Spacer Grid in a Rod Bundle
,”
Int. J. Heat Fluid Flow
,
51
, pp.
151
165
.10.1016/j.ijheatfluidflow.2014.07.005
8.
Cinosi
,
N.
,
Walker
,
S. P.
,
Bluck
,
M. J.
, and
Issa
,
R.
,
2014
, “
CFD Simulation of Turbulent Flow in a Rod Bundle With Spacer Grids (MATIS-H) Using STAR-CCM
,” +
Nucl. Eng. Des.
,
279
, pp.
37
49
.10.1016/j.nucengdes.2014.06.019
9.
Frank
,
T.
,
Jain
,
S.
,
Matyushenko
,
A. A.
, and
Garbaruk
,
A. V.
,
2012
, “
The OECD/NEA MATIS-H Benchmark—CFD Analysis of Water Flow Through a 5X5 Rod Bundle With Spacer Grids Using ANSYS FLUENT and ANSYS CFX
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-4)
,
Daejeon, South Korea
, Sept. 10–12, Paper No. S04#3, p.
37
.
10.
Golibrodo
,
L. A.
,
Strebnev
,
N. A.
,
Kurnosov
,
M. M.
,
Galkin
,
I. U.
, and
Vdovkina
,
I. K.
,
2012
, “
CFD Simulation of Turbulent Flow Structure in a Rod Bundle Array With the Split-Type Spacer Grid
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-4)
,
Daejeon, South Korea
, Sept. 10–12, Paper No. P1#2, p.
13
.
11.
Končar
,
B.
, and
Košmrlj
,
S.
,
2018
, “
Simulation of Turbulent Flow in MATIS-H Rod Bundle With Split-Type Mixing Vanes
,”
Nucl. Eng. Des.
,
327
, pp.
112
126
.10.1016/j.nucengdes.2017.12.017
12.
Lee
,
J. R.
,
Kim
,
J.
, and
Song
,
C.-H.
,
2012
, “
Synthesis of the OECD/NEA-KAERI Rod Bundle CFD Benchmark Exercise
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-4)
,
Daejeon, South Korea
, Sept. 10–12, Paper No. KN02, p.
41
.
13.
Lee
,
J. R.
,
Kim
,
J.
, and
Song
,
C.-H.
,
2014
, “
Synthesis of the Turbulent Mixing in a Rod Bundle With Vaned Spacer grids Based on the OECD-KAERI CFD Benchmark Exercise
,”
Nucl. Eng. Des.
,
279
, pp.
3
18
.10.1016/j.nucengdes.2014.03.008
14.
Mikuž
,
B.
, and
Tiselj
,
I.
,
2016
, “
Wall-Resolved Large Eddy Simulation in Grid-Free 5 × 5 Rod Bundle of MATiS-H Experiment
,”
Nucl. Eng. Des.
,
298
, pp.
64
77
.10.1016/j.nucengdes.2015.12.021
15.
Mikuž
,
B.
, and
Tiselj
,
I.
,
2017
, “
URANS Prediction of Flow Fluctuations in Rod Bundle With Split-Type Spacer Grid
,”
Int. J. Heat Fluid Flow
,
64
, pp.
10
22
.10.1016/j.ijheatfluidflow.2017.01.008
16.
Peña-Monferrer
,
C.
,
Muñoz-Cobo
,
J. L.
, and
Chiva
,
S.
,
2014
, “
CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle
,”
Sci. Technol. Nucl. Ins.
,
2014
, pp.
1
15
.10.1155/2014/635651
17.
Podila
,
K.
,
Rao
,
Y. F.
,
Krause
,
M.
, and
Bailey
,
J.
,
2014
, “
A CFD Simulation of 5 × 5 Rod Bundles With Split-Type Spacers
,”
Prog. Nucl. Energy
,
70
, pp.
167
175
.10.1016/j.pnucene.2013.08.012
18.
Podila
,
K.
, and
Rao
,
Y. F.
,
2016
, “
CFD Modelling of Turbulent Flows Through 5 × 5 Fuel Rod Bundles With Spacer-Grids
,”
Ann. Nucl. Energy
,
97
, pp.
86
95
.10.1016/j.anucene.2016.07.003
19.
Smith
,
B. L.
,
Song
,
C.-H.
,
Chang
,
S.-K.
,
Lee
,
J. R.
, and
Kim
,
J. W.
,
2013
, “
Report of the OECD/NEA KAERI Rod Bundle CFD Benchmark Exercise
,”
NEA/CSNI
,
Paris, France
, p.
124
, accessed ▪, https://www.oecd-nea.org/upload/docs/application/pdf/2020-01/csni-r2013-5.pdf
20.
Bieder
,
U.
,
Falk
,
F.
, and
Fauchet
,
G.
,
2014
, “
LES Analysis of the Flow in a Simplified PWR Assembly With Mixing Grid
,”
Prog. Nucl. Energy
,
75
, pp.
15
24
.10.1016/j.pnucene.2014.03.014
21.
Kang
,
S. K.
, and
Hassan
,
Y. A.
,
2016
, “
Computational Fluid Dynamics (CFD) Round Robin Benchmark for a Pressurized Water Reactor (PWR) Rod Bundle
,”
Nucl. Eng. Des.
,
301
, pp.
204
231
.10.1016/j.nucengdes.2016.03.007
22.
Conner
,
M. E.
,
Baglietto
,
E.
, and
Elmahdi
,
A. M.
,
2010
, “
CFD Methodology and Validation for Single-Phase Flow in PWR Fuel Assemblies
,”
Nucl. Eng. Des.
,
240
(
9
), pp.
2088
2095
.10.1016/j.nucengdes.2009.11.031
23.
Conner
,
M. E.
,
Hassan
,
Y. A.
, and
Dominguez-Ontiveros
,
E. E.
,
2013
, “
Hydraulic Benchmark Data for PWR Mixing Vane Grid
,”
Nucl. Eng. Des.
,
264
, pp.
97
102
.10.1016/j.nucengdes.2012.12.001
24.
Holloway
,
M. V.
,
McClusky
,
H. L.
,
Beasley
,
D. E.
, and
Conner
,
M. E.
,
2004
, “
The Effect of Support Grid Features on Local, Single-Phase Heat Transfer Measurements in Rod Bundles
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
1
), pp.
43
53
.10.1115/1.1643091
25.
Holloway
,
M. V.
,
Conover
,
T. A.
,
McClusky
,
H. L.
,
Beasley
,
D. E.
, and
Conner
,
M. E.
,
2005
, “
The Effect of Support Grid Design on Azimuthal Variation in Heat Transfer Coefficient for Rod Bundles
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
6
), pp.
598
605
.10.1115/1.1863274
26.
Holloway
,
M. V.
,
Beasley
,
D. E.
, and
Conner
,
M. E.
,
2008
, “
Single-Phase Convective Heat Transfer in Rod Bundles
,”
Nucl. Eng. Des.
,
238
(
4
), pp.
848
858
.10.1016/j.nucengdes.2007.08.003
27.
Gandhir
,
A.
, and
Hassan
,
Y.
,
2011
, “
RANS Modeling for Flow in Nuclear Fuel Bundle in Pressurized Water Reactors (PWR)
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4404
4408
.10.1016/j.nucengdes.2011.08.084
28.
In
,
W.-K.
,
Oh
,
D.-S.
, and
Chun
,
T.-H.
,
2003
, “
Simulation of Turbulent Flow in Rod Bundles Using Eddy Viscosity Models and the Reynolds Stress Model
,”
Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10)
,
Seoul, South Korea
, Oct. 5–11, Paper No. E00213, p.
14
.
29.
Liu
,
C. C.
, and
Ferng
,
Y. M.
,
2010
, “
Numerically Simulating the Thermal-Hydraulic Characteristics Within the Fuel Rod Bundle Using CFD Methodology
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3078
3086
.10.1016/j.nucengdes.2010.05.021
30.
Liu
,
C. C.
,
Ferng
,
Y. M.
, and
Shih
,
C. K.
,
2012
, “
CFD Evaluation of Turbulence Models for Flow Simulation of the Fuel Rod Bundle With a Spacer Assembly
,”
Appl. Therm. Eng.
,
40
, pp.
389
396
.10.1016/j.applthermaleng.2012.02.027
31.
McClusky
,
H. L.
,
Holloway
,
M. V.
,
Beasley
,
D. E.
, and
Conner
,
M. E.
,
2002
, “
Development of Swirling Flow in a Rod Bundle Subchannel
,”
ASME. J. Fluids Eng.
,
124
(
3
), pp.
747
755
.10.1115/1.1478066
32.
McClusky
,
H. L.
,
Holloway
,
M. V.
,
Conover
,
T. A.
,
Beasley
,
D. E.
,
Conner
,
M. E.
, and
Smith
,
L.
,
2003
, “
Mapping of the Lateral Flow Field in Typical Subchannels of a Support Grid With Vanes
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
987
996
.10.1115/1.1625688
33.
Nguyen
,
T.
, and
Hassan
,
Y.
,
2017
, “
Stereoscopic Particle Image Velocimetry Measurements of Flow in a Rod Bundle With a Spacer Grid and Mixing Vanes at a Low Reynolds Number
,”
Int. J. Heat Fluid Flow
,
67
, pp.
202
219
.10.1016/j.ijheatfluidflow.2017.08.011
34.
Busco
,
G.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2019
, “
Invariant Analysis of the Reynolds Stress Tensor for a Nuclear Fuel Assembly With Spacer Grid and Split Type Vanes
,”
Int. J. Heat Fluid Flow
,
77
, pp.
144
156
.10.1016/j.ijheatfluidflow.2019.04.006
35.
Hatman
,
A.
,
Williams
,
G.
,
Martin
,
M.
,
Keheley
,
T.
,
Lascar
,
C.
,
Goodhearth
,
K.
, and
Chatelain
,
A.
,
2013
, “
CFD Analysis of Reactor Core Flow Field in Support of FIV Diagnosis
,”
Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15)
,
Pisa, Italy
, May 12–17, Paper No. 064, p.
12
.
36.
Roelofs
,
F.
, and
Doolaard
,
H.
,
2017
, “
Towards 3D CFD Models of PWR Fuel Assemblies at Reasonable Computational Costs
,”
Proceedings of the 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17)
,
Xi'an, China
, Sept. 3–8, Paper 12692, p.
14
.
37.
Li
,
X.
, and
Gao
,
Y.
,
2014
, “
Methods of Simulating Large-Scale Rod Bundle and Application to a 17 × 17 Fuel Assembly With Mixing Vane Spacer Grid
,”
Nucl. Eng. Des.
,
267
, pp.
10
22
.10.1016/j.nucengdes.2013.11.064
38.
Roelofs
,
F.
,
Gopala
,
V. R.
,
Chandra
,
L.
,
Viellieber
,
M.
, and
Class
,
A.
,
2012
, “
Simulating Fuel Assemblies With Low Resolution CFD Approaches
,”
Nucl. Eng. Des.
,
250
, pp.
548
559
.10.1016/j.nucengdes.2012.05.029
39.
Hu
,
R.
, and
Fanning
,
T. H.
,
2013
, “
A Momentum Source Model for Wire-Wrapped Rod Bundles—Concept, Validation and Application
,”
Nucl. Eng. Des.
,
262
, pp.
371
389
.10.1016/j.nucengdes.2013.04.026
40.
Viellieber
,
M.
, and
Class
,
A.
,
2015
, “
Investigating Reactor Components With the Coarse-Grid Methodology
,”
Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-15)
,
Chicago, IL
, Aug. 30–Sept. 4, Paper No. 2788, p.
14
.
41.
Capone
,
L.
,
Benhamadouche
,
S.
, and
Hassan
,
Y. A.
,
2016
, “
Source Terms Modeling for Spacer Grids With Mixing Vanes for CFD Simulations in Nuclear Reactors
,”
Comput. Fluids
,
126
, pp.
141
152
.10.1016/j.compfluid.2015.11.011
42.
Prandtl
,
L.
,
1952
,
Essentials of Fluid Dynamics: With Applications to Hydraulics, Aeronautics, Meteorology and Other Subjects
,
Blackie & Son Limited
,
Glasgow, UK
, p.
452
.
43.
Chandra
,
L.
,
Roelofs
,
F.
,
Houkema
,
M.
, and
Jonker
,
B.
,
2009
, “
A Stepwise Development and Validation of a RANS Based CFD Modelling Approach for the Hydraulic and Thermal-Hydraulic Analyses of Liquid Metal Flow in a Fuel Assembly
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1988
2003
.10.1016/j.nucengdes.2009.05.022
44.
Mikuž
,
B.
, and
Tiselj
,
I.
,
2016b
, “
Wall-Resolved Large Eddy Simulation of Secondary Flow in Grid-Free Fuel Assembly
,”
Proceedings of the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NRS-6)
,
Boston, MA
, Sept. 13–15, Paper No. P2_6, p.
13
.
45.
Baglietto
,
E.
, and
Ninokata
,
H.
,
2005
, “
A Turbulence Model Study for Simulating Flow Inside Tight Lattice Rod Bundles
,”
Nucl. Eng. Des.
,
235
(
7
), pp.
773
784
.10.1016/j.nucengdes.2004.10.007
46.
Mikuž
,
B.
, and
Shams
,
A.
,
2019
, “
Assessment of RANS Models for Flow in a Loosely Spaced Bare Rod Bundle With Heat Transfer in Low Prandtl Number Fluid
,”
Ann. Nucl. Energy
,
124
, pp.
441
459
.10.1016/j.anucene.2018.10.017
47.
Meyer
,
L.
,
2010
, “
From Discovery to Recognition of Periodic Large Scale Vortices in Rod Bundles as Source of Natural Mixing Between Subchannels—A Review
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1575
1588
.10.1016/j.nucengdes.2010.03.014
48.
Tavoularis
,
S.
,
2011
, “
Reprint of: Rod Bundle Vortex Networks, Gap Vortex Streets, and Gap Instability: A Nomenclature and Some Comments on Available Methodologies
,”
Nucl. Eng. Des.
,
241
, pp.
4612
4614
.
49.
Shams
,
A.
,
Mikuž
,
B.
, and
Roelofs
,
F.
,
2018
, “
Numerical Prediction of Flow and Heat Transfer in a Loosely Spaced Bare Rod Bundle
,”
Int. J. Heat Fluid Flow
,
73
, pp.
42
62
.10.1016/j.ijheatfluidflow.2018.07.006
50.
Bieder
,
U.
, and
Genrault
,
C.
,
2020
, “
CFD Analysis of Intra and Inter Fuel Assembly Mixing
,”
Ann. Nucl. Energy
,
135
, p.
106977
10.1016/j.anucene.2019.106977
51.
[
51] AREVA,
2005
,
Epr
,
AREVA
,
France
.
52.
AREVA
,
2009
,
The Path of Greatest Certainty
,
AREVA
,
France
.
53.
Knief
,
R. A.
,
1992
,
Nuclear Engineering: Theory and Technology of Commercial Nuclear Power
,
Taylor & Francis
,
Mechanicsburg, PA
, p.
770
.
54.
Todreas
,
N. E.
, and
Kazimi
,
M. S.
,
2012
,
Nuclear Systems
,
CRC Publishing
,
Boca Raton, FL
, p.
1034
.
55.
Maskal
,
A. B.
, and
Aydogan
,
F.
,
2017
, “
Mathematical Spacer Grid Models for Single Phase Flow
,”
Ann. Nucl. Energy
,
103
, pp.
130
146
.10.1016/j.anucene.2017.01.019
56.
Linstrom
,
P. J.
, and
Mallard
,
W. G.
,
2017
, “
NIST Chemistry WebBook
,”
NIST Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg, Montgomery, MD
.
57.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Modeling for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
58.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
59.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.10.1016/0094-4548(74)90150-7
60.
Lien
,
F. S.
,
Chen
,
W. L.
, and
Leschziner
,
M. A.
,
1996
, “
Low-Reynolds Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations
,”
Third International Symposium on Engineering Turbulence Modelling and Measurements
,
ELSEVIER SCIENCE PUBL B V
,
Crete, Greece
, May 27–29, pp.
91
100
.
61.
Tiselj
,
I.
,
2010
, “
Inženirski Povzetek Izbranih Poglavij Termodinamike in Mehanike Tekočin
,”
Faculty of Mathematics and Physics, University in Ljubljana
, ▪, accessed June 3, 2021, http://predmeti.fmf.uni-lj.si/JTE?action=AttachFile&do=get&target=termodinamika-mehanika-fluidov.pdf
62.
Rehme
,
K.
, and
Trippe
,
G.
,
1980
, “
Pressure Drop and Velocity Distribution in Rod Bundles With Spacer Grids
,”
Nucl. Eng. Des.
62
(
1–3
), pp.
349
359
.10.1016/0029-5493(80)90038-2
63.
Rehme
,
K.
,
1973
, “
Pressure Drop Correlations For Fuel Element Spacers
,”
Nucl. Technol.
,
17
(
1
), pp.
15
23
.10.13182/NT73-A31250
64.
Chun
,
T.-H.
, and
Oh
,
D.-S.
,
1998
, “
A Pressure Drop Model for Spacer Grids With and Without Flow Mixing Vanes
,”
J. Nucl. Sci. Technol.
,
35
(
7
), pp.
508
510
.10.1080/18811248.1998.9733899
65.
In
,
W. K.
,
Oh
,
D. S.
, and
Chun
,
T. H.
,
2002
, “
Empirical and Computational Pressure Drop Correlations for Pressurized Water Reactor Fuel Spacer Grids
,”
Nucl. Technol.
,
139
(
1
), pp.
72
79
.10.13182/NT02-A3305
66.
Mikuž
,
B.
,
2016
, “
Modelling of Turbulent Flow in a Fuel Assembly of Pressurized Water Reactor
,” Ph.D thesis, ▪, ▪, accessed ▪, https://repozitorij.uni-lj.si/Dokument.php?id=106449&lang=eng
67.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
,
1993
, “
Impinging Jet Studies for Turbulence Model Assessment--II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2685
2697
.10.1016/S0017-9310(05)80205-4
You do not currently have access to this content.