Abstract
An analytical expression for turbulent kinematic viscosity (), based solely on the hydraulic Reynolds number (Re), was derived and evaluated. The analytical expression is valid for the fast estimation of for internal, isotropic, fully developed flows. The expression was compared with experimental and simulation data for air, water, and liquid sodium, and was shown to provide reasonable values for 2100 ≤ Re ≤ 3.6 106 and Prandtl number (Pr) range of 0.0107 ≤ Pr ≤ 5.65. In addition, new expressions suitable for the central portion of internal flows, away from the wall, were derived for the turbulent Reynolds number (), showing its relationship to Re, as well as to the ratio of and the molecular kinematic viscosity ().
Issue Section:
Technical Briefs
References
1.
Canuto
,
V. M.
,
Goldman
,
I.
, and
Chasnov
,
J.
, 1988
, Turbulent Viscosity. Astron. Astrophys.
200, pp. 291
–300
.2.
Absi
,
R.
, 2009
, “
A Simple Eddy Viscosity Formulation for Turbulent Boundary Layers Near Smooth Walls
,” C. R. Mec.
,
337
(3
), pp. 158
–165
.10.1016/j.crme.2009.03.0103.
Absi
,
R.
, 2019
, “
Eddy Viscosity and Velocity Profiles in Fully-Developed Turbulent Channel Flows
,” Fluid Dyn.
,
54
(1
), pp. 137
–147
.10.1134/S00154628190100144.
Noskov
,
V.
,
Denisov
,
S.
,
Stepanov
,
R.
, and
Frick
,
P.
, 2012
, “
Turbulent Viscosity and Turbulent Magnetic Diffusivity in a Decaying Spin-Down Flow of Liquid Sodium
,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
85
(1
), p. 9
.10.1103/PhysRevE.85.0163035.
Rodriguez
,
S.
, 2019
, Applied Computational Fluid Dynamics and Turbulence Modeling
,
Springer
,
Switzerland
, p. 301
.https://link.springer.com/book/10.1007/978-3-030-28691-06.
Wilcox
,
D. C.
, 2006
, Turbulence Modeling for CFD
,
DCW Industries Incorporated
, La Cañada,
CA
, p. 522
.7.
Kolmogorov
,
A. N.
, 1941
, “
Equations of Turbulent Motion in an Incompressible Fluid
,” Dokl. Akad. Nauk. SSSR
,
30
(4
), pp. 299
–303
.8.
Taylor, G. I., 1935, “Statistical Theory of Turbulence,”
Proc. R. Soc. London. Ser. A-Math. Phys. Sci
., 151(873), pp. 421–444.10.1098/rspa.1935.01589.
Prandtl
,
L.
, 1945
, “Uber Ein Neues Formel-System Fur Die Ausgebildete Turbulenz,” Nachr. Akad. Wiss, Gottin. Math, Phys. Kl
, 1945, pp. 874–887.10.1007/978-3-662-11836-8_7210.
Sandborn
,
V. A.
, 1955
, “
Experimental Evaluation of Momentum Terms in Turbulent Pipe Flow
,” NACA
Tech. Note 3266, Washington, DC, p. 40
, Report No. 3266.https://ntrs.nasa.gov/citations/1993008401611.
Minin
,
O.
, and
Minin
,
I.
, 2011
, Computational Fluid Dynamics: Technologies and Applications
,
InTech
,
Rijeka, Croatia
, p. 375
.https://www.intechopen.com/books/16112.
Russo
,
F.
, and
Basse
,
N. T.
, 2016
, “Scaling of Turbulence Intensity for Low-Speed Flow in Smooth Pipes,” Flow Meas. Instrum.
, 52, pp. 101–114.10.1016/j.flowmeasinst.2016.09.01213.
Basse
,
N. T.
, 2017
, “Turbulence Intensity and the Friction Factor for Smooth-and Rough-Wall Pipe Flow,” Fluids
, 2(2), p. 30.10.3390/fluids202003014.
de Karman
,
T.
, and
Howarth
,
L.
, 1938
, “
On the Statistical Theory of Isotropic Turbulence
,” Proc. R. Soc. London. Ser. A-Math. Phys. Sci.
,
164
(917
), pp. 192
–215
.10.1098/rspa.1938.001315.
Kawahara
,
G.
, 2009
, “
Theoretical Interpretation of Coherent Structures in Near-Wall Turbulence
,” Fluid Dyn. Res.
,
41
(6
), p. 064001
.10.1088/0169-5983/41/6/06400116.
Pourghasemi
,
M.
,
Fathi
,
N.
, and
Rodriguez
,
S.
,
2021
, “
Numerical Study on Flow and Heat Transfer of Water and Liquid Metals Within Micro-Scale Heat Sinks for High Heat Dissipation Rate Applications
,” Fluid Dynamics, e-print arXiv:2106.11752
.10.48550/arXiv.2106.1175217.
Jischa
,
M.
, and
Rieke
,
H. B.
,
1979
, “
About the Prediction of Turbulent Prandtl and Schmidt Numbers from Modeled Transport Equations
,” Int. J. Heat Mass Transfer
,
22
(11
), pp. 1547
–1555
.10.1016/0017-9310(79)90134-0Copyright © 2022 by Sandia National Laboratories (SNL)
You do not currently have access to this content.