Abstract

In this work, radon excess lung cancer (ELC) was estimated for 14 soil samples from the Babylon cement plant in Iraq. A CR-39 nuclear track detector was used to measure uranium and radon (222Rn) concentrations in the soil samples. The uranium concentration varied from 0.008 to 0.05 ppm, with a mean value of 0.025 ± 0.013 ppm. The radon concentration was found to be between 31 and 92 Bq/m3, with a mean value of 56.72 and a standard division of 17.29. The radon ELC per million persons per year has a mean value of 863 (463.81–12,082.8) and a standard division of 261.65. The annual effective dose, E (mSv/y), ranged from 0.77 to 2.32, with a mean value of 1.44 and a standard division of 0.44.

References

1.
Chattopadhyay
,
S.
, and
Chattopadhyay
,
D.
,
2012
, “Fossil Energy: Selected Entries From the Encyclopedia of Sustainability Science and Technology,”
Encyclopedia of Sustainability Science and Technology
, R. Malhotra, ed., Springer, New York.
2.
UNSCEAR
,
2008
, “
Sources and Effects of Ionizing Radiation United Nations Scientific Committee on the Effects of Atomic Radiation
,” UNSCEAR, Report to the General Assembly with Scientific, Annexes, Vol. II, Annex D—Health Effects Due to Radiation From the Chernobyl Accident, New York.
3.
UNSCEAR
,
2000
, “
Exposures From Natural Radiation Sources (Annex B), Sources and Effects of Ionizing Radiation
,” UNSCEAR, Report, pp.
84
141
.
4.
UNSCEAR
,
2010
, “Sources and Effects of Ionizing Radiation—Exposures of The Public and Workers From Various Sources of Radiation—UNSCEAR 2008,” UNSCEAR, Report of the United Nations Scientific Committee on the Effect of Atomic Radiation, New York.
5.
Yuness
,
M.
,
Mohamed
,
A.
,
Abd El-Hady
,
M.
,
Moustafa
,
M.
, and
Nazmy
,
H.
,
2015
, “
Indoor Activity of Short-Lived Radon Progeny as Critical Parameter in Dose Assessment
,”
Solid State Phenom.
,
238
, pp.
151
160
.10.4028/www.scientific.net/SSP.238.151
6.
Yuness
,
M.
,
Mohamed
,
A.
,
AbdEl-Hady
,
M.
,
Moustafa
,
M.
, and
Nazmy
,
H.
,
2015
, “
Effect of Indoor Activity Size Distribution of 222Rn Progeny in-Depth Dose Estimation
,”
Appl. Radiat. Isot.
,
97
, pp.
34
39
.10.1016/j.apradiso.2014.12.002
7.
Yuness
,
M.
,
Mohamed
,
A.
,
Nazmy
,
H.
,
Moustafa
,
M.
, and
Abd El-Hady
,
M.
,
2016
, “
Indoor Activity Size Distribution of the Short-Lived Radon Progeny
,”
Stochastic Environ. Res. Risk Assess.
,
30
(
1
), pp.
167
174
.10.1007/s00477-015-1057-x
8.
Mostafa
,
M. Y. A.
,
Vasyanovich
,
M.
, and
Zhukovsky
,
M.
,
2017
, “
A Primary Standard Source of Radon-222 Based on the HPGe Detector
,”
Appl. Radiat. Isot.
,
120
, pp.
101
105
.10.1016/j.apradiso.2016.12.012
9.
Mostafa
,
M. Y. A.
,
Vasyanovich
,
M.
, and
Zhukovsky
,
M.
,
2016
, “
Prototype of a Primary Calibration System for Measurement of Radon Activity Concentration
,”
Appl. Radiat. Isot.
,
107
, pp.
109
112
.10.1016/j.apradiso.2015.10.014
10.
Sakr
,
S.
,
Mostafa
,
M. Y.
,
Mohamed
,
A.
,
Moustafa
,
A. M.
, and
Ahmed
,
A. A.
,
2019
, “
Effect of Activity Particle Size Distribution on Deposition Fraction of Inhaled Radon Decay Products in Human Respiratory System
,”
AIP Conf. Proc.
, 2174, p.
020139
.10.1063/1.5134290
11.
Samet
,
J. M.
,
1989
, “
Radon and Lung Cancer
,”
J. Natl. Cancer Inst.
,
81
(
10
), pp.
745
758
.10.1093/jnci/81.10.745
12.
Zeeb, H., and Shannoun, F.
,
2009
,
Who Handbook on Indoor Radon, A Public Health Perspective
,
WHO Press, World Health Organization
,
Geneva, Switzerland
.
13.
Arora, S., and Gupta, S., 2019, “Monitoring Tobacco Use and Prevention Policies: Perspective of WHO Report on the Global Tobacco Epidemic, 2017,” Journal of Nursing Science & Practice, 9(2), pp. 39–45.
14.
Ridha
,
A. A.
, and
Ayyed
,
H. K.
,
2018
, “
Using Wall Paints as a Barrier to Radon Gas Emission
,”
J. Phys. Stud.
,
22
(
1
), pp.
1
5
.10.30970/jps.22.1201
15.
Özen
,
S. A.
,
Celik
,
N.
,
Dursun
,
E.
, and
Taskın
,
H.
,
2018
, “
Indoor and Outdoor Radon Measurements at Lung Cancer Patients' Homes in the Dwellings of Rize Province in Turkey
,”
Environ. Geochem. Health
,
40
(
3
), pp.
1111
1125
.10.1007/s10653-017-9991-9
16.
Khwedim
,
K.
,
Meza-Figueroa
,
D.
,
Hussien
,
L. A.
, and
Río-Salas
,
R. D.
,
2015
, “
Trace Metals in Topsoils Near the Babylon Cement Factory (Euphrates River) and Human Health Risk Assessment
,”
Environ. Earth Sci.
,
74
(
1
), pp.
665
673
.10.1007/s12665-015-4071-x
17.
Ahmed
,
I. K.
,
2012
, “
Measurement of Radon-222 Concentration in Soil Samples of Some Regions in AL-Ansar Historical District in the Southern of AL-Najf City Using Nuclear Track Detector CR-39, Al-Mustansiriyah
,”
J. Sci.
,
23
, pp.
125
132
.10.30723/ijp.v11i21.367
18.
Matiullah
,
M.
,
2013
, “
Determination of the Calibration Factor for CR-39 Based Indoor Radon Detector
,”
J. Radioanal. Nucl. Chem.
,
298
, pp.
369
373
.10.1007/s10967-013-2451-9
19.
Smilgys
,
B.
,
Guedes
,
S.
,
Morales
,
M.
,
Alvarez
,
F.
,
Hadler
,
J. C.
,
Coelho
,
P. R. P.
,
Siqueira
,
P. T. D.
,
Alencar
,
I.
,
Soares
,
C. J.
, and
Curvo
,
E. A. C.
,
2013
, “
Boron Thin Films and CR-39 Detectors in BNCT: A Method to Measure the 10B(n,α)7Li Reaction Rate
,”
Radiat. Meas.
,
50
, pp.
181
186
.10.1016/j.radmeas.2012.07.001
20.
Ali
,
H. H.
,
Abass
,
K. H.
, and
Hashim
,
F. S.
,
2016
, “
Measurement of Radon Gas Concentration in Fertilizer Samples Using Irradiated Cr-39 Nuclear Track Detector
,”
J. Environ. Sci.
,
35
, pp.
21
34
.10.21608/jes.2016.28277
21.
Kamil Ahmed
,
I.
, and
Hussein
,
L. A.
,
2019
, “
Measurement of Radon and Uranium Concentration in Soil Samples From Babylon Cement Plant Using Nuclear Track Detector CR-39
,”
Iraqi J. Phys.
,
12
(
24
), p.
68
.10.30723/ijp.v12i24.323
22.
National Council on Radiation Protection and Measurement
,
1984
, “
Exposures from the Uranium Series With Emphasis on Radon and Its Daughters
,” National Council on Radiation, Report No. 077.
You do not currently have access to this content.