Abstract

The measurement of radon decay products level in dwellings or working places separately is not preferable. The estimation of radon equivalent equilibrium concentration (EECRn) is more simple and quick technique. In this work, the uncertainty of calibration system for EECRn measurements will present and the reduction will be suggesting. The calibration system for EECRn measurements was presented and described in previous work with gamma spectrometer as a reference measuring device. The influence of alpha particles absorption in filters materials and filter efficiency taken into account. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement and the systematic shift between average values is observed and resolved. The total standard uncertainty of EECRn measurements with gamma spectroscopy is 3.8%. About 71% of this total uncertainty value is related to the uncertainty of the count rate at full absorption peak with gamma spectroscopy. If the time between the end of sampling and gamma spectroscopy measurements reduced to 2000s not 4000 s, this value will reduce to 1.6% and the total standard uncertainty of EECRn will be 2.6%.

References

1.
Mostafa
,
Y. A. M.
,
Vasyanovich
,
M.
,
Zhukovsky
,
M.
, and
Zaitceva
,
N.
,
2015
, “
Calibration System for Radon EEC Measurements
,”
Radiat. Prot. Dosimetry
,
164
(
4
), pp.
587
590
.10.1093/rpd/ncv316
2.
Kadir
,
A.
,
Zhang
,
L.
,
Guo
,
Q.
, and
Liang
,
J.
,
2013
, “
Efficiency Analysis and Comparison of Different Radon Progeny Measurement Methods
,”
Sci. World J.
,
2013
, pp.
1
6
.10.1155/2013/269168
3.
Mostafa
,
M. Y. A.
,
Vasyanovich
,
M.
, and
Zhukovsky
,
M.
,
2016
, “
Prototype of a Primary Calibration System for Measurement of Radon Activity Concentration
,”
Appl. Radiat. Isotopes
,
107
, pp.
109
112
.10.1016/j.apradiso.2015.10.014
4.
De Felice
,
P.
,
2007
, “
Primary Standards of Radon
,”
Metrologia
,
44
(
4
), pp.
S82
S86
.10.1088/0026-1394/44/4/S11
5.
Cassette
,
P.
,
Sahagia
,
M.
,
Grigorescu
,
L.
,
Lépy
,
M. C.
, and
Picolo
,
J. L.
,
2006
, “
Standardization of222Rn by LSC and Comparison With α- and γ-Spectrometry
,”
Appl. Radiat. Isotopes
,
64
(
10–11
), pp.
1465
1470
.10.1016/j.apradiso.2006.02.068
6.
Nedjadi
,
Y.
,
Spring
,
P.
,
Bailat
,
C.
,
Decombaz
,
M.
,
Triscone
,
G.
,
Gostely
,
J. J.
,
Laedermann
,
J. P.
, and
Bochud
,
F. O.
,
2007
, “
Primary Activity Measurements With 4πγ NaI(Tl) Counting and Monte Carlo Calculated Efficiencies
,”
Appl. Radiat. Isotopes
,
65
(
5
), pp.
534
538
.10.1016/j.apradiso.2006.10.009
7.
Picolo
,
J. L.
,
Pressyanov
,
D.
,
Blanchis
,
P.
,
Barbier
,
M.
,
Michielsen
,
N.
,
Grassin
,
D.
,
Voisin
,
V.
, and
Turek
,
K.
,
2000
, “
A Radon 222 Traceability Chain From Primary Standard to Field Detectors
,”
Appl. Radiat. Isotopes
,
52
(
3
), pp.
427
434
.10.1016/S0969-8043(99)00190-6
8.
Mostafa
,
M. Y. A.
,
Vasyanovich
,
M.
, and
Zhukovsky
,
M.
,
2017
, “
A Primary Standard Source of Radon-222 Based on the HPGe Detector
,”
Appl. Radiat. Isotopes
,
120
, pp.
101
105
.10.1016/j.apradiso.2016.12.012
9.
Nazaroff
,
W. W.
,
1980
, “
An Improved Technique for Measuring Working Levels of Radon Daughters in Residences
,”
Health Phys.
,
39
(
4
), pp.
683
688
.https://inis.iaea.org/search/search.aspx?orig_q=RN:12591476
10.
Khalaf
,
H. N. B.
,
Mostafa
,
M. Y. A.
, and
Zhukovsky
,
M.
,
2019
, “
A Combined System for Radioactive Aerosol Size Distribution Measurements of Radon Decay Products
,”
Radiat. Phys. Chem.
,
165
, p.
108402
.10.1016/j.radphyschem.2019.108402
11.
Khalaf
,
H. N. B.
,
Mostafa
,
M. Y. A.
, and
Zhukovsky
,
M.
,
2019
, “
Radiometric Efficiency of Analytical Filters at Different Physical Conditions
,”
J. Radioanal. Nucl. Chem.
,
319
(
1
), pp.
347
355
.10.1007/s10967-018-6347-6
12.
Khalaf
,
H. N. B.
,
Mostafa
,
M. Y. A.
, and
Zhukovsky
,
M.
,
2019
, “
Radioactive Aerosol Permeability Through Russian Radiometric Analytical (PF) Filters
,”
J. Radioanal. Nucl. Chem.
,
319
(
3
), pp.
1283
1289
.10.1007/s10967-019-06421-z
13.
Khalaf
,
H. N. B.
,
Mostafa
,
M. Y. A.
, and
Zhukovsky
,
M.
,
2019
, “
Radioactive and Non-Radioactive Aerosol Permeability Through Two Types of Analytical Filters
,”
J. Phys.: Conf. Ser.
,
1353
, p.
012080
.10.1088/1742-6596/1353/1/012080
14.
Khalaf
,
H. N. B.
,
Mostafa
,
M. Y. A.
,
Vasyanovich
,
M.
, and
Zhukovsky
,
M.
,
2019
, “
Comparison of Radioactive Aerosol Size Distributions (Activity, Number, Mass, and Surface Area)
,”
Appl. Radiat. Isotopes
,
145
, pp.
95
100
.10.1016/j.apradiso.2018.12.022
15.
Budyka, A. K., and Borisov, N. B.
,
2008
, “Fiber Filters to Control Air Pollution,”
Moscow
,
IzdAt
.
16.
Mostafa
,
M. Y. A.
, and
Zhukovsky
,
M. V.
,
2019
, “
Alpha Self-Absorption Evaluation in Radiometric Filter Material for the Natural Range of Alpha Energy (5-9 Mev)
,”
RAD Conf. Proc.
,
3
, pp.
115
118
.10.21175/RadProc.2018.25
17.
Thomas
,
J. W.
,
1972
, “
Measurement of Radon and Radon Daughters in Air
,”
Health Phys.
,
92
, pp.
283
289
.https://journals.lww.com/health-physics/Abstract/1972/12000/Measurement_of_Radon_Daughters_in_Air.4.aspx
18.
Abdelfatah Mostafa
,
M. Y.
,
Bader Khalaf
,
H. N.
, and
Zhukovsky
,
M.
,
2020
, “
Radon Decay Products Equilibrium at Different Aerosol Concentrations
,”
Appl. Radiat. Isotopes
,
156
, p.
108981
.10.1016/j.apradiso.2019.108981
You do not currently have access to this content.