Abstract

The general context of this paper is an evaluation of strategies that can be used to mitigate aerosol dispersion during fuel debris or corium retrieval in damaged Fukushima Daiichi reactors. Knowledge of the aerosol source terms released during fuel debris retrieval operations is one of the key factors for assessing aerosol dispersion leading to the potential dissemination of radionuclides into the environment. Our approach is to couple experimental results from integral tests obtained during laser cutting experiments, analytical tests performed in a dedicated facility to reproduce two-phase flow such as flows representative of pool scrubbing and spray scrubbing conditions, and numerical simulations. Integral tests provide relevant information on the airborne particle release fraction during laser cutting for underwater conditions at different water depths, such as the particle concentration and particle size distribution. However, the detailed characterization of two-phase flows, such as the size and velocity of gas bubble and water droplets, is not possible during laser cutting integral tests. Therefore, a more analytical approach is necessary to obtain detailed information on two-phase flow, composed of bubbles in water, inducing pool scrubbing phenomenon, and droplets in gas generated by spray scrubbing systems, which are essential to the physical mechanisms of both processes and enable their respective efficiencies to be evaluated. The main objectives of this work were to develop models and ensure their validation based on experimental approach for predicting the pool scrubbing and spray scrubbing efficiencies in the context of fuel debris removal at Fukushima Daiichi.

References

1.
Georges
,
C.
,
Roulet
,
D.
,
Chagnot
,
C.
,
Journeau
,
C.
,
Canneau
,
G.
,
Blanchard
,
S.
, and
Porcheron
,
E.
,
2017
, “
Benefits From Developments in the Field of Decommissioning for Fukushima Daiichi Fuel Debris Retrieval: Remote-Controlled Laser Cutting Process
,”
Proceedings of WM2017 Conference
, Phoenix, AZ, Mar. 6–9.
2.
Chagnot
,
C.
,
de Dinechin
,
G.
, and
Canneau
,
G.
,
2010
, “
Cutting Performances With New Industrial Continuous Wave ND: YAG High Power Lasers: For Dismantling of Former Nuclear Workshops, the Performances of Recently Introduced High Power Continuous Wave ND:YAG Lasers Are Assessed
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
2604
2613
.10.1016/j.nucengdes.2010.06.041
3.
Chagnot
,
C.
,
Doyen
,
I.
,
Li Puma
,
A.
,
Georges
,
C.
,
Porcheron
,
E.
,
Gelain
,
T.
, and
Roulet
,
D.
,
2018
, “
Deep Gouging: Development of Deep Blind Kerf Laser Cutting Technology for Fukushima Fuel Debris Retrieval
,” International Conference on Decommissioning Challenges (
DEM 2018
), Avignon, France.https://www.researchgate.net/publication/328738577_Deep_gouging_development_of_deep_blind_kerf_laser_cutting_technology_for_FUKUSHIMA_fuel_debris_retrie
4.
Pilot
,
G.
,
Fauvel
,
S.
,
Gosse
,
X.
,
de Dinechin
,
G.
, and
Vernhet
,
D.
,
2008
, “
Measurement of Secondary Emissions During Laser Cutting of Steel Equipments
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
2124
2134
.10.1016/j.nucengdes.2007.10.028
5.
ISO
,
1995
,
Air Quality—Particles Size Fractions Definitions for Health-Related Sampling
,
International Standards Organization
,
Geneva
, ISO Standard No. 7708.
6.
Porcheron
,
E.
,
Peillon
,
S.
,
Gelain
,
T.
,
Chagnot
,
C.
,
Journeau
,
C.
, and
Roulet
,
D.
,
2018
, “
Analysis of Aerosol Emission and Dispersion During the Laser Cutting of Fukushima Fuel Debris Simulants
,”
International Conference on Nuclear Engineering
, (ICONE 26), London, England.
7.
Porcheron
,
E.
,
Dazon
,
C.
,
Gelain
,
T.
,
Chagnot
,
C.
,
Doyen
,
I.
,
Journeau
,
C.
,
Excoffier
,
E.
, and
Roulet
,
D.
,
2021
, “
Fukushima Daiichi Fuel Debris Retrieval: Results of Aerosol Characterization During Laser Cutting of Non-Radioactive Corium Simulants
,”
J. Nucl. Sci. Technol.
,
58
(
1
), pp.
87
99
.10.1080/00223131.2020.1806135
8.
Journeau
,
C.
,
Roulet
,
D.
,
Porcheron
,
E.
,
Piluso
,
P.
, and
Chagnot
,
C.
,
2018
, “
Fukushima Daiichi Fuel Debris Simulant Materials for the Development of Cutting and Collection Technologies
,”
J. Nucl. Sci. Technol.
,
55
(
9
), pp.
985
995
.10.1080/00223131.2018.1462267
9.
Journeau, C, Excoffier, E
,
J.
,
Testud
,
V.
,
Brackx
,
E.
,
Chagnot
,
C.
,
Doyen
,
I.
,
Porcheron
,
E.
, and
Roulet
,
D.
,
2019
, “
Aerosols Released During the Laser Cutting of a Fukushima Daiichi Debris Simulant
,” European Review Meeting on Severe Accident Research (
ERMSAR 2019
), Prague, Czech Republic.https://hal-cea.archives-ouvertes.fr/cea-02023046/document
10.
Freitag
,
M.
,
Gupta
,
S.
,
Beck
,
S.
, and
Sonnenkalb
,
M.
,
2019
, “
Experimental and Analytical Investigations of Aerosol Processes—Wash-Out and Wash-Down
,”
Nucl. Sci. Eng.
,
193
(
1–2
), pp.
198
210
.10.1080/00295639.2018.1479091
11.
Del Corno
,
A.
,
Morandi
,
S.
,
Parozzi
,
F.
,
Araneo
,
L.
, and
Casella
,
F.
,
2017
, “
Experiments on Aerosol Removal by High pressure Water Spray
,”
Nucl. Eng. Des.
,
311
, pp.
28
34
.10.1016/j.nucengdes.2016.06.043
12.
Porcheron
,
E.
,
Lemaitre
,
P.
,
Marchand
,
D.
,
Plumecocq
,
W.
,
Nuboer
,
A.
, and
Vendel
,
J.
,
2010
, “
Experimental and Numerical Approaches of Aerosol Removal in Spray Conditions for Containment Application
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
336
343
.10.1016/j.nucengdes.2008.08.023
13.
Plumecocq
,
W.
,
Layly
,
V. D.
, and
Bentaib
,
A.
, 2005,
Modelling of the Containment Mitigation Measures in the ASTEC Code, Focusing on Spray Hydrogen Recombiners
,
International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-11)
,
Avignon, France.
14.
Porcheron
,
E.
,
Lemaitre
,
P.
,
Nuboer
,
A.
,
Rochas
,
V.
, and
Vendel
,
J.
,
2007
, “
Experimental Investigation in the TOSQAN Facility of Heat and Mass Transfers in a Spray for Containment Application
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1862
1871
.10.1016/j.nucengdes.2007.01.018
15.
Fuchs
,
N.
,
1964
,
The Mechanics of Aerosols
,
Pergamon Press
,
Oxford, UK
.
16.
Pich
,
J.
, and
Schütz
,
W.
,
1991
, “
On the Theory of Particle Deposition in Rising Gas Bubbles: The Absorption Minimum
,”
J. Aerosol Sci.
,
22
(
3
), pp.
267
272
.10.1016/S0021-8502(05)80005-9
17.
Peillon
,
S.
,
Fauvel
,
S.
,
Chagnot
,
C.
, and
Gensdarmes
,
F.
,
2017
, “
Aerosol Characterization and Particle Scrubbing Efficiency of Underwater Operations During Laser Cutting of Steel Components for Dismantling of Nuclear Facilities
,”
Aerosol Air Qual. Res.
,
17
(
6
), pp.
1463
1473
.10.4209/aaqr.2016.09.0421
18.
Kim
,
H. T.
,
Jung
,
C. H.
,
Oh
,
S. N.
, and
Lee
,
K. W.
,
2001
, “
Particle Removal Efficiency of Gravitational Wet Scrubber Considering Diffusion, Interception and Impaction
,”
Environ. Eng. Sci.
,
18
(
2
), pp.
125
136
.10.1089/10928750151132357
19.
Bianchini
,
A.
,
Cento
,
F.
,
Golfera
,
L.
,
Pellegrini
,
M.
, and
Saccani
,
C.
,
2016
, “
Performance Analysis of Different Scrubber Systems for Removal of Particulate Emissions From a Small Size Biomass Boiler
,”
Biomass Bioenergy
,
92
, pp.
31
39
.10.1016/j.biombioe.2016.06.005
20.
Rimberg
,
D.
, and
Peng
,
Y.
,
1977
,
Aerosol Collection by Falling Droplet
,
Air Pollution Control and Design Handbook
,
New York
.
21.
Waldmann
,
L.
, and
Schmitt
,
K. H.
,
1966
,
Thermophoresis and Diffusiophoresis of Aerosol
,
C.N. Davies
.
22.
Murata
,
K. K.
,
Williams
,
D. C.
,
Tills
,
J.
,
Griffith
,
R. O.
,
Gido
,
R. G.
,
Tadios
,
E. L.
,
Davis
,
F. J.
,
Martinez
,
G. M.
, and
Washington
,
K. E.
,
1997
, “
Code Manual for CONTAIN 2.0: A Computer Code for Nuclear Reactor Containment Analysis
,” Sandia National Laboratories, Albuquerque, NM, Report No. NUREG/CR-6533, SAND97-1735.
23.
Postma
,
A. K.
, and
Coleman
,
L. F.
,
1970
, “
Effect of Continuous Spray Operation on the Removal of Aerosol and Gases in the Containment Systems Experiment
,” Report No. BNWL-1485.
24.
Parsly
,
L. F.
,
1971
, “
Removal of Radioactive Particles by Sprays
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No. ORNL-4671.
25.
Prodi
,
F.
,
Santachiara
,
G.
, and
Cornetti
,
C.
,
2002
, “
Measurements of Diffusiophoretic Velocities of Aerosol Particles in the Transition Region
,”
J. Aerosol Sci.
,
33
(
1
), pp.
181
188
.10.1016/S0021-8502(01)00164-1
26.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
.10.1017/S0022112080001905
27.
Journeau
,
C.
,
Monneris
,
J.
,
Tormos
,
B.
,
Brissonneau
,
L.
,
Excoiffier
,
E.
,
Testud
,
V.
,
Chagnot
,
C.
, and
Roulet
,
D.
,
2017
, “
Fabricating Fukushima Daiichi In-Vessel and Ex-Vessel Fuel Debris Simulants for the Development and Qualification of Laser Cutting Technique
,” European Review Meeting on Severe Accident Research (
ERMSAR-2017
), May 16–18. Warsaw, Poland.https://hal.archives-ouvertes.fr/hal-02418118/document
28.
Robb
,
K.
,
Francis
,
M. W.
, and
Farmer
,
M. T.
,
2014
, “
Ex-Vessel Core Melt Modeling Comparison Between MELTSPREAD-CORQUENCH and MELCOR 2.1
,”
Oak Ridge National
, Oak Ridge, TN, Report No.
ORNL/TM-2014
.https://info.ornl.gov/sites/publications/files/Pub47758.pdf
29.
Nishihara
,
K.
,
Iwamoto
,
H.
, and
Suyama
,
K.
,
2012
, “
Estimation of Fuel Compositions in Fukushima-Daiichi Nuclear Power Plant
,”
Japan Atomic Energy Agency (JAEA)
, Tokyo, Japan, Report No. Data/Code
2012
018
.
30.
Porcheron
,
E.
, and
Gelain
,
T.
,
2017
, “
Investigation of Air Ingress Into a Vacuum Vessel Related to Particle Re-Suspension and Distribution for Dust Issues in ITER
,”
ASME
Paper No. ICONE25-67496.
10.1115/ICONE25-67496
31.
Porcheron
,
E.
,
Leblois
,
Y.
,
Gelain
,
T.
,
Chagnot
,
C.
,
Journeau
,
C.
, and
Roulet
,
D.
,
2019
, “
Study of Spray Scrubbing as Mitigation Means Against Aerosol Dispersion During the Fukushima Dai-Ichi Fuel Debris Retrieval
,” International Conference on Nuclear Engineering (
ICONE 27
), Tsukuba, Japan, May 19-24.10.1299/jsmeicone.2019.27.1234
32.
Porcheron
,
E.
,
Leblois
,
Y.
,
Gelain
,
T.
,
Chagnot
,
C.
,
Doyen
,
I.
,
Journeau
,
C.
, and
Roulet
,
D.
,
2019
, “
Fukushima Daiichi Fuel Debris Retrieval: Aerosol Pool Scrubbing Efficiency Applied to Underwater Laser Cutting
,” International Conference on Nuclear Engineering (
ICONE 27
), Tsukuba, Japan, May 19-24.10.1299/jsmeicone.2019.27.1233
33.
Porcheron
,
E.
,
Lemaitre
,
P.
,
Van Beeck
,
J.
,
Vetrano
,
R.
,
Brunel
,
M.
,
Gréhan
,
G.
, and
Guiraud
,
L.
,
2015
, “
Development of a Spectrometer for Airborne Measurement of Droplet Sizes in Clouds
,”
J. Eur. Opt. Soc.-Rapid Publ.
,
10
, p.
15026
.
34.
Gelain
,
T.
,
Porcheron
,
E.
,
Chagnot
,
C.
, and
Roulet
,
D.
,
2018
, “
CFD Simulations of Aerosol Dispersion and Agglomeration During the Laser Cutting of Fukushima Fuel Debris Simulants
,”
ASME
Paper No. ICONE26-82408.10.1115/ICONE26-82408
35.
Porcheron
,
E.
,
Peillon
,
S.
,
Gelain
,
T.
,
Chagnot
,
C.
,
Journeau
,
C.
,
Excoffier
,
E.
,
Testud
,
V.
, and
Roulet
,
D.
,
2018a
, “
Fukushima Dai-Ichi Fuel Debris Retrieval: Analysis of Aerosol Emission and Dispersion During Simulants Laser Cutting
,”
International Conference on Decommissioning Challenges (DEM 2018)
, Avignon, France.
36.
Dazon
,
C.
,
Porcheron
,
E.
,
Journeau
,
C.
,
Suteau
,
C.
,
Chagnot
,
C.
,
Doyen
,
I.
,
Excoffier
,
E.
, and
Roulet
,
D.
,
2020
, “
Characterization of Chemical Composition and Particle Size Distribution of Aerosols Released During Laser Cutting of Fuel Debris Simulants
,”
J. Environ. Chem. Eng.
,
8
(
4
), p.
103872
.10.1016/j.jece.2020.103872
37.
Gervais
,
P.-C.
,
Bourrous
,
S.
,
Dany
,
F.
,
Bouilloux
,
L.
, and
Ricciardi
,
L.
,
2015
, “
Simulations of Filter Media Performances From Microtomography-Based Computational Domain. Experimental and Analytical Comparison
,”
Comput. Fluids
,
116
, pp.
118
128
.10.1016/j.compfluid.2015.04.019
38.
Nerisson
,
P.
,
Simonin
,
O.
,
Ricciardi
,
L.
,
Douce
,
A.
, and
Fazileabasse
,
J.
,
2011
, “
Improved CFD Transport and Boundary Conditions Models for Low-Inertia Particles
,”
Comput. Fluids
,
40
(
1
), pp.
79
91
.10.1016/j.compfluid.2010.08.013
You do not currently have access to this content.