Abstract

Inconel 625 is considered one of the candidate materials for fuel cladding in the Canadian supercritical water reactor. Gas tungsten arc welding (GTAW) is being evaluated as a joining technique for SCWR fuel cladding since this method is widely used to join components in the power and nuclear industry. The thermal cycle, during the GTAW process, produces different types of microstructures that affect the material's mechanical properties. The objective of this work was to study the effect of corrosion testing at supercritical water conditions on mechanical properties of Inconel 625 base material (BM) and weldments. Tubular Inconel 625 specimens were welded using a GTAW orbital process. Corrosion testing was conducted in an autoclave at 575 °C (848.15 K) and 23.5 MPa for 500 h (1.8 × 106 s). Weld characterization included mechanical tests, optical microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. The composition of second phase precipitates observed during microstructural characterization was elucidated using equilibrium phase diagrams. Tensile tests showed that both BM and welds displayed an increase in strength and a decrease in ductility after corrosion testing. The ultimate tensile strength increased about 2% and 9% for the BM and the weldment, respectively. The maximum specimen elongation decreased around 35% for the BM and 45% for the weldment. The microstructure showed indications of second phase precipitation and grain morphology changes produced by both welding and corrosion processes. Results show that ductility of Inconel 625 GTAW welds is significantly reduced after exposure to supercritical water for 500 h (1.8 × 106 s).

References

1.
Bsat
,
S.
, and
Huang
,
X.
,
2016
, “
Corrosion Behaviour of IN625 in Superheated Steam at 800 °C
,”
Corr. Eng. Sci. Technol.
,
51
(
5
), pp.
1
8
.10.1080/1478422X.2015.1104064
2.
Guzonas
,
D.
,
2009
, “
SCWR Materials and Chemistry: Status of Ongoing Research
,”
GIF Symposium
, Paris, France, Sept. 9–10, pp.
163
171
.https://inis.iaea.org/search/search.aspx?orig_q=RN:43002318
3.
Sridhar
,
S. P.
,
Arun Kumar
,
S.
, and
Sathiya
,
P.
,
2016
, “
A Study on the Effect of Different Activating Flux on A-TIG Welding Process of Incoloy 800H
,”
Adv. Mater. Sci.
,
16
(
3
), pp.
26
37
.10.1515/adms-2016-0014
4.
Bhaduri
,
A. K.
,
Srinivasa
,
G.
,
Gill
,
T. P. S.
, and
Mannan
,
S. L.
,
1995
, “
Effect of Aging on the Microstructure and Tensile Properties of an Alloy 800/9Cr-1Mo Steel Joint
,”
Int. J. Pressure Vessels Piping
,
61
(
1
), pp.
25
33
.10.1016/0308-0161(94)P3696-J
5.
Sireesha
,
M.
,
Shankar
,
V.
,
Shaju
,
K. A.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Features of Dissimilar Welds Between 316 LN Austenitic Stainless Steel and Alloy 800
,”
Mater. Sci. Eng. A
,
292
(
1
), pp.
74
82
.10.1016/S0921-5093(00)00969-2
6.
Sun
,
M.
,
Wu
,
X.
,
Zhang
,
Z.
, and
Han
,
E. H.
,
2008
, “
Analyses of Oxide Films Grown on Alloy 625 in Oxidizing Supercritical Water
,”
J. Supercrit. Fluids
,
47
(
2
), pp.
309
317
.10.1016/j.supflu.2008.07.010
7.
Ren
,
X.
,
Sridharan
,
K.
, and
Allen
,
T. R.
,
2007
, “
Corrosion Behaviour of Alloys 625 and 718 in Supercritical Water
,”
Corrosion
,
63
(
7
), pp.
603
612
.10.5006/1.3278410
8.
Tan
,
T.
,
Ren
,
X.
,
Sridharan
,
K.
, and
Allen
,
T. R.
,
2008
, “
Corrosion Behaviour of Ni-Base Alloys for Advanced High Temperature Water-Cooled Nuclear Plants
,”
Corros. Sci.
,
50
(
11
), pp.
3056
3062
.10.1016/j.corsci.2008.08.024
9.
Teysseyre
,
S.
, and
Was
,
G. S.
,
2006
, “
Stress Corrosion Cracking of Austenitic Alloys in Supercritical Water
,”
Corrosion
,
62
(
12
), pp.
1100
1116
.10.5006/1.3278244
10.
Cota-Sanchez
,
G.
, and
Xiao
,
L.
,
2021
, “
GTAW Welded Inconel 625 Alloy Fuel Cladding for the Canadian SCWR: Microstructure and Mechanical Property Characterization
,”
ASME J. Nucl. Rad. Sci.
,
7
(
3
), p.
031304
.10.1115/1.4049278
11.
Chatterjee
,
N.
,
2012
, Electron Microprobe Analysis Course 12.141 Notes,
MIT
,
Cambridge, MA
, accessed Apr. 5, 2022, http://web.mit.edu/e-probe/www
12.
Bale
,
C. W.
,
Bélisle
,
E.
,
Chartrand
,
P.
,
Decterov
,
S. A.
,
Eriksson
,
G.
,
Gheribi
,
A. E.
,
Hack
,
K.
,
et al.
,
2016
, “
FactSage Thermochemical Software and Databases 2010-2016
,”
Calphad
,
54
, pp.
35
53
.10.1016/j.calphad.2016.05.002
13.
Pelton
,
A.
,
2019
,
Phase Diagrams and Thermodynamic Modeling of Solutions
,
Elsevier
,
Cambridge, MA
.
14.
Hall
,
E.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. Sect. B
,
64
(
9
), pp.
747
753
.10.1088/0370-1301/64/9/303
15.
Petch
,
N.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=426784
16.
Shankar
,
V.
,
Valsan
,
M.
,
Rao
,
K. B. S.
, and
Mannan
,
S. L.
,
2001
, “
Room Temperature Tensile Behavior of Service Exposed and Thermally Aged Service Exposed Alloy 625
,”
Scr. Mater.
,
44
(
12
), pp.
2703
2711
.10.1016/S1359-6462(01)00965-4
17.
Conder
,
C. R.
,
Smith
,
G. D.
, and
Radavich
,
J. F.
,
1997
, “
Microstructural and Mechanical Property Characterization of Aged Inconel Alloy 625 LCF
,”
Proceedings of Superalloys 718, 625, 706 and Derivatives
, Pittsburgh, PA, June 15–18,
pp.
447
458
.https://documents.pub/document/microstructural-and-mechanical-property-and-mechanicalproperty-characterization.html?page=1
18.
Suave
,
L. M.
,
Bertheau
,
D.
,
Cormier
,
J.
,
Villechaise
,
P.
,
Soula
,
A.
,
Hervier
,
Z.
, and
Laigo
,
J.
,
2014
, “
Impact of Microstructural Evolutions During Thermal Aging of Alloy 625 on Its Monotonic Mechanical Properties
,”
EUROSUPERALLOYS—Second European Symposium on Superalloys and Their Applications
, Giens, France, May 12–16, p.
21001
.10.1051/matecconf/20141421001
You do not currently have access to this content.