Abstract

Canadian Nuclear Laboratories has an on-going Research & Development program to support the development of a scaled–down 300 MWe version of the Canadian Super-Critical Water Reactor concept. The 300 MWe and 170–channel reactor core concept uses low enriched uranium fuel and features a maximum cladding temperature of 500 °C. Our goal is to test surface-modified zirconium alloys for use as fuel cladding. Zirconium alloys are attractive as they offer low neutron cross section thereby allowing the use of low enriched fuel. In this paper, we report on the results of general corrosion experiments used to evaluate chromium-coated zirconium-based alloys in the two chemistries (630 μg/kg O2 in both de-aerated and lithiated supercritical water). These experiments were conducted in a refreshed autoclave at 500 °C and 23.5 MPa. After exposure, the weight gain and the hydrogen absorption were examined. At adequate coating thickness, longitudinal and transverse coupons show similar corrosion behavior with improved corrosion resistance compared to uncoated coupons. The measured concentrations of hydrogen absorption are higher for the transverse coupons. Alkaline treatment resulted in higher weight gains than was found in pure oxygenated supercritical water.

References

1.
Vazquez
,
C.
,
Fortis
,
A. M.
, and
Bozzano
,
P. B.
,
2015
, “
Comparison of Mechanical Properties of Zr-1%Nb and Zr-2.5%Nb Alloys
,”
Procedia Mater. Sci.
,
8
, pp.
478
485
.10.1016/j.mspro.2015.04.099
2.
Alam
,
T.
,
Khan
,
M. K.
,
Pathak
,
M.
,
Ravi
,
K.
,
Singh
,
R.
, and
Gupta
,
S. K.
,
2011
, “
A Review on the Clad Failure Studies
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3658
3677
.10.1016/j.nucengdes.2011.08.009
3.
Kim
,
H.
,
Kim
,
I.
,
Choi
,
B.
, and
Park
,
J.
,
2011
, “
A Study of the Breakaway Oxidation Behavior of Zirconium Cladding Materials
,”
J. Nucl. Mater.
,
418
(
1–3
), pp.
186
197
.10.1016/j.jnucmat.2011.06.039
4.
Motta
,
A. T.
,
Couet
,
A.
, and
Comstock
,
R. J.
,
2015
, “
Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding
,”
Annu. Rev. Mater. Res.
,
45
(
1
), pp.
311
343
.10.1146/annurev-matsci-070214-020951
5.
Khatamian
,
D.
,
2013
, “
Corrosion and Deuterium Uptake of Zr-Based Alloys in Supercritical Water
,”
J. Supercrit. Fluids
,
78
, pp.
132
142
.10.1016/j.supflu.2013.03.013
6.
Motta
,
A. T.
,
Yilmazbayhan
,
A.
,
Gomes da Silva
,
M. J.
,
Comstock
,
R. J.
,
Was
,
G. S.
,
Busby
,
J. T.
,
Gartner
,
E.
,
Peng
,
Q.
,
Jeong
,
Y. H.
, and
Park
,
J. Y.
,
2007
, “
Zirconium Alloys for Supercritical Water Reactor Applications: Challenges and Possibilities
,”
J. Nucl. Mater.
,
371
(
1–3
), pp.
61
75
.10.1016/j.jnucmat.2007.05.022
7.
Peng
,
Q.
,
Gartner
,
E.
,
Busby
,
J. T.
,
Motta
,
A. T.
, and
Was
,
G. S.
,
2007
, “
Corrosion Behavior of Model Zirconium Alloys in Deaerated Supercritical Water at 500 °C
,”
Corrosion
,
63
(
6
), pp.
577
590
.10.5006/1.3278408
8.
Kaneda
,
J.
,
Kasahara
,
S.
,
Kuniya
,
J.
,
Kano
,
F.
,
Takahashi
,
H.
, and
Matsui
,
H.
,
2007
, “
Material Properties of Stainless Steels Modified With Addition of Zirconium for Supercritical Water-Cooled Reactor
,”
International Congress on Advances in Nuclear Power Plants
, Report No. INIS-FR–08-0971, Nice, France, May 13–16, Paper No. 7500.https://www.researchgate.net/publication/289062367_Material_properties_of_stainless_steels_modified_with_addition_of_zirconium_for_supercritical_watercooled_reactor
9.
Ševeček
,
M.
,
Gurgen
,
A.
,
Seshadri
,
A.
,
Che
,
Y.
,
Wagih
,
M.
,
Phillips
,
B.
,
Champagne
,
V.
, and
Shirvan
,
K.
,
2018
, “
Development of Cr Cold Spray-Coated Fuel Cladding With Enhanced Accident Tolerance
,”
Nucl. Eng. Technol.
,
50
(
2
), pp.
229
236
.10.1016/j.net.2017.12.011
10.
Zhong
,
W.
,
Mouche
,
P. A.
, and
Heuser
,
B. J.
,
2018
, “
Response of Cr and Cr-Al Coatings on Zircaloy-2 to High Temperature Steam
,”
J. Nucl. Mater.
,
498
, pp.
137
148
.10.1016/j.jnucmat.2017.10.021
11.
Duan
,
Z.
,
Yang
,
H.
,
Satoh
,
Y.
,
Murakami
,
K.
,
Kano
,
S.
,
Zhao
,
Z.
,
Shen
,
J.
, and
Abe
,
H.
,
2017
, “
Current Status of Materials Development of Nuclear Fuel Cladding Tubes for Light Water Reactors
,”
Nucl. Eng. Des.
,
316
, pp.
131
150
.10.1016/j.nucengdes.2017.02.031
12.
Tang
,
C.
,
Stueber
,
M.
,
Seifert
,
H. J.
, and
Steinbrueck
,
M.
,
2017
, “
Protective Coatings on Zirconium-Based Alloys as Accident-Tolerant Fuel (ATF) Claddings
,”
Corros. Rev.
,
35
(
3
), pp.
141
165
.10.1515/corrrev-2017-0010
13.
Kim
,
H.
,
Yang
,
J.
,
Kim
,
W.
, and
Koo
,
Y.
,
2016
, “
Development Status of Accident-Tolerant Fuel for Light Water Reactors in Korea
,”
Nucl. Eng. Technol.
,
48
(
1
), pp.
1
15
.10.1016/j.net.2015.11.011
14.
Kuprin
,
АS.
,
Belous
,
V. А.
,
Voyevodin
,
V. N.
,
Bryk
,
V. V.
,
Vasilenko
,
R. L.
,
Ovcharenko
,
V. D.
,
Reshetnyak
,
E. N.
,
Tolmachova
,
G. N.
, and
V'yugov
,
P. N.
,
2015
, “
Vacuum-Arc Chromium-Based Coatings for Protection of Zirconium Alloys From the High-Temperature Oxidation in Air
,”
J. Nucl. Mater.
,
465
, pp.
400
406
.10.1016/j.jnucmat.2015.06.016
15.
Park
,
J.-H.
,
Kim
,
H.
,
Park
,
J.-Y.
,
Jung
,
Y.
,
Park
,
D.
, and
Koo
,
Y.
,
2015
, “
High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings
,”
Surf. Coat. Technol.
,
280
, pp.
256
259
.10.1016/j.surfcoat.2015.09.022
16.
Khumsa-Ang
,
K.
,
Edwards
,
M.
, and
Rousseau
,
S.
,
2020
, “
General Corrosion of Cr-Coated and Non-Coated Zr- and Ti-Based Alloys in Supercritical Water at 500 °C
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
3
), p. 031102.10.1115/1.4045387
17.
Subramanian
,
V.
,
Joseph
,
J. M.
,
Subramanian
,
H.
,
Noël
,
J. J.
,
Guzonas
,
D. A.
, and
Wren
,
J. C.
,
2016
, “
Steady-State Radiolysis of Supercritical Water: Model Predictions and Validation
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
2
(
2
), p. 021021.10.1115/1.4031199
You do not currently have access to this content.