Abstract

Space fission power systems can enable ambitious solar-system and deep-space science missions. The heat pipe-cooled reactor is one of the most potential candidates for near-term space power supply, featuring safety, simplicity, reliability, and modularity. Heat pipe-cooled reactors are solid-state and high-temperature (up to 1500 K) reactors, where the thermal expansion is remarkable and the mechanical response significantly influences the neutronics and thermal analyses. Due to the considerable difference between heat pipe-cooled reactors and traditional water reactors in the structure and design concept, the coupling solutions for light water reactors cannot be directly applied to heat pipe-cooled reactor analyses. Therefore, a new coupling framework and program need to consider the coupling effects among neutronics, heat transfer, and mechanics. Based on the Monte Carlo program rmc and commercial finite element program ansysmechanicalansys parametric design language (APDL), this work introduces the three coupling fields of neutronics (N), thermal (T), and mechanics (M) for heat pipe cooled reactors. Besides, the finite element method and the Monte Carlo program use different meshes and geometry construction methods. Therefore, the spatial mapping and geometry reconstruction are also essential for the N/T-M coupling, which is discussed and established in detail. Furthermore, the N/T-M coupling methods are applied to the preliminary self-designed 10 kWel space heat pipe cooled reactor. Coupling shows that the thermal-mechanical feedback in the solid-state reactor has negative reactivity feedback (about −2000 pcm) while it has a deterioration in heat transfer due to the expansion in the gas gap.

References

1.
Sun
,
H.
,
Wang
,
C.
,
Ma
,
P.
,
Liu
,
X.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G.
,
2018
, “
Conceptual Design and Analysis of a Multipurpose Micro Nuclear Reactor Power Source
,”
Ann. Nucl. Energy
,
121
, pp.
118
127
.10.1016/j.anucene.2018.07.025
2.
Liu
,
X.
,
Sun
,
H.
,
Tang
,
S.
,
Wang
,
C.
,
Tian
,
X. I.
,
Qiu
,
S. Z.
, and
Su
,
G.
,
2019
, “
Thermal‐Hydraulic Design Features of a Micronuclear Reactor Power Source Applied for Multipurpose
,”
Int. J. Energy Res.
,
43
(
9
), pp.
4170
4183
.10.1002/er.4542
3.
Ma
,
Y.
,
Chen
,
E.
,
Yu
,
H.
,
Zhong
,
R.
,
Deng
,
J.
,
Chai
,
X.
,
Huang
,
S.
,
Ding
,
S.
, and
Zhang
,
Z.
,
2020
, “
Heat Pipe Failure Accident Analysis in Megawatt Heat Pipe Cooled Reactor
,”
Ann. Nucl. Energy
,
149
, p.
107755
.10.1016/j.anucene.2020.107755
4.
Poston
,
D. I.
,
Kapernick
,
R. J.
, and
Guffee
,
R. M.
,
2002
, “
Design and Analysis of the SAFE-400 Space Fission Reactor
,”
AIP Conf. Proc.
,
0608,
578
588
.10.1063/1.1449775
5.
Yu
,
H.
,
Ma
,
Y.
,
Zhang
,
Z.
, and
Chai
,
X.
,
2019
, “
Initiation and Development of Heat Pipe Cooled Reactor
,”
Nucl. Power Eng.
,
40
(
4
),
1
8
(in Chinese).10.13832/j.jnpe.2019.04.0001
6.
Ring
,
P. J.
,
Sayre
,
E. D.
,
Dyke
,
M. V.
, and
Houts
,
M.
,
2002
, “
Progress in Hardware Development for the SAFE Heatpipe Reactor System
,”
AIP Conf. Proc.
,
608,
pp.
148
155
.10.1063/1.1449719
7.
Reid
,
R. S.
,
Sena
,
J. T.
, and
Martinez
,
A. L.
,
2001
, “
Sodium Heat Pipe Module Test for the SAFE30 Reactor Prototype
,”
AIP Conf. Proc.
,
552,
869
874
.10.1063/1.1358021
8.
Sanchez
,
R.
,
Grove
,
T.
,
Hayes
,
D.
,
Goda
,
J.
,
McKenzie
,
G.
,
Hutchinson
,
J.
,
Cutler
,
T.
,
Bounds
,
J.
,
Walker
,
J.
,
Myers
,
W.
, and
Smith
,
K.
,
2020
, Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Component-Critical Experiments,
Nucl. Technol.
,
206
(Suppl. 1), pp.
56
67
.10.1080/00295450.2020.1722553
9.
Poston
,
D. I.
,
Gibson
,
M. A.
,
McClure
,
P. R.
, and
Sanchez
,
R. G.
,
2020
, “
Results of the KRUSTY Warm Critical Experiments
,”
Nucl. Technol.
,
206
(
Suppl. 1
), pp.
S78
88
.10.1080/00295450.2020.1727287
10.
Hernandez
,
R.
,
Todosow
,
M.
, and
Brown
,
N. R.
,
2019
, “
Micro Heat Pipe Nuclear Reactor Concepts: Analysis of Fuel Cycle Performance and Environmental Impacts
,”
Ann. Nucl. Energy
,
126
, pp.
419
426
.10.1016/j.anucene.2018.11.050
11.
Turner
,
J. A.
,
Clarno
,
K.
,
Sieger
,
M.
,
Bartlett
,
R.
,
Collins
,
B.
,
Pawlowski
,
R.
,
Schmidt
,
R.
, and
Summers
,
R.
,
2016
, “
The Virtual Environment for Reactor Applications (VERA): Design and Architecture
,”
J. Comput. Phys.
,
326
, pp.
544
568
.10.1016/j.jcp.2016.09.003
12.
Chanaron
,
B.
,
Ahnert
,
C.
,
Crouzet
,
N.
,
Sanchez
,
V.
,
Kolev
,
N.
,
Marchand
,
O.
,
Kliem
,
S.
, and
Papukchiev
,
A.
,
2015
, “
Advanced Multi-Physics Simulation for Reactor Safety in the Framework of the NURESAFE Project
,”
Ann. Nucl. Energy
,
84
, pp.
166
177
.10.1016/j.anucene.2014.12.013
13.
Gaston
,
D.
,
Newman
,
C.
,
Hansen
,
G.
, and
Lebrun-Grandié
,
D.
,
2009
, “
MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equations
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1768
1778
.10.1016/j.nucengdes.2009.05.021
14.
Kulesza
,
J. A.
,
Franceschini
,
F.
,
Evans
,
T. M.
, and
Gehin
,
J. C.
,
2016
, “
Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)
,”
The European Physical Journal Conferences
, Vol.
106
, Aix en Provence, France, Paper No. 03002, pp.
1
7
.
15.
Ma
,
Y.
,
Liu
,
M.
,
Xie
,
B.
,
Han
,
W.
,
Yu
,
H.
,
Huang
,
S.
,
Chai
,
X.
,
Liu
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Neutronic and Thermal-Mechanical Coupling Analyses in a Solid-State Reactor Using Monte Carlo and Finite Element Methods
,”
Ann. Nucl. Energy
,
151
, pp.
107923
107942
.10.1016/j.anucene.2020.107923
16.
Wang
,
K.
,
Li
,
Z.
,
She
,
D.
,
Liang
,
J. G.
,
Xu
,
Q.
,
Qiu
,
Y.
,
Yu
,
J.
,
Sun
,
J.
,
Fan
,
X.
, and
Yu
,
G.
,
2015
, “
RMC—A Monte Carlo Code for Reactor Core Analysis
,”
Ann. Nucl. Energy
,
82
, pp.
121
129
.10.1016/j.anucene.2014.08.048
17.
Wang
,
K.
,
Liu
,
S.
,
Li
,
Z.
,
Wang
,
G.
,
Liang
,
J.
,
Yang
,
F.
,
Chen
,
Z.
,
Guo
,
X.
,
Qiu
,
Y.
,
Wu
,
Q.
,
Guo
,
J.
, and
Tang
,
X.
,
2017
, “
Analysis of BEAVRS Two-Cycle Benchmark Using RMC Based on Full Core Detailed Model
,”
Prog. Nucl. Energy
,
98
, pp.
301
302
.10.1016/j.pnucene.2017.04.009
18.
Liu
,
S.
,
Liang
,
J.
,
Qu
,
W.
,
Guo
,
J. J.
,
Huang
,
S.
,
Xiao
,
T.
,
Li
,
Z.
, and
Kan
,
W.
,
2017
, “
BEAVRS Full Core Burnup Calculation in Hot Full Power Condition by RMC Code
,”
Ann. Nucl. Energy
,
101
, pp.
434
446
.10.1016/j.anucene.2016.11.033
19.
Ma
,
Y.
,
Liu
,
S.
,
Luo
,
Z.
,
Huang
,
S.
,
Li
,
K.
,
Wang
,
K.
,
Yu
,
G.
, and
Yu
,
H.
,
2019
, “
RMC/CTF Multiphysics Solutions to VERA Core Physics Benchmark Problem 9
,”
Ann. Nucl. Energy
,
133
, pp.
837
852
.10.1016/j.anucene.2019.07.033
20.
Ma
,
Y.
,
Min
,
J.
,
Li
,
J.
,
Liu
,
S.
,
Liu
,
M.
,
Shang
,
X.
,
Yu
,
G.
,
Huang
,
S.
,
Yu
,
H.
, and
Wang
,
K.
,
2020
, “
Neutronics and Thermal-Hydraulics Coupling Analysis in Accelerator-Driven Subcritical System
,”
Prog. Nucl. Energy
,
122
, pp.
103235
103240
.10.1016/j.pnucene.2019.103235
21.
Guo
,
J.
,
Liu
,
S.
,
Shang
,
X.
,
Huang
,
S.
, and
Wang
,
K.
,
2017
, “
Coupled Neutronics/Thermal-Hydraulics Analysis of a Full PWR Core Using RMC and CTF
,”
Ann. Nucl. Energy
,
109
, pp.
327
336
.10.1016/j.anucene.2017.05.041
22.
Mylonakis
,
A. G.
,
Varvayanni
,
M.
,
Catsaros
,
N.
,
Savva
,
P.
, and
Grigoriadis
,
D. G. E.
,
2014
, “
Multi-Physics and Multi-Scale Methods Used in Nuclear Reactor Analysis
,”
Ann. Nucl. Energy
,
72
, pp.
104
119
.10.1016/j.anucene.2014.05.002
23.
Liu
,
S.
,
Yuan
,
Y.
,
Yu
,
J. K.
, and
Wang
,
K.
,
2016
, “
Development of on-the-Fly Temperature-Dependent Cross-Sections Treatment in RMC Code
,”
Ann. Nucl. Energy
,
94
, pp.
144
149
.10.1016/j.anucene.2016.02.026
24.
She
,
D.
,
Wang
,
K.
, and
Yu
,
G.
,
2012
, “
Asymptotic Wielandt Method and Superhistory Method for Source Convergence in Monte Carlo Criticality Calculation
,”
Nucl. Sci. Eng.
,
172
(
2
), pp.
127
137
.10.13182/NSE11-44
25.
Fabritsiev
,
S.
,
Gosudarenkova
,
V.
,
Potapova
,
V.
,
Rybin
,
V.
,
Kosachev
,
L.
,
Chakin
,
V.
,
Pokrovsky
,
A.
, and
Barabash
,
V.
,
1992
, “
Effects of Neutron Irradiation on Physical and Mechanical Properties of Mo-Re Alloys
,”
J. Nuclear Mater.
,
191–194
, pp.
426
429
.10.1016/S0022-3115(09)80080-9
26.
Muta
,
H.
,
Kurosaki
,
K.
,
Uno
,
M.
, and
Yamanaka
,
S.
,
2008
, “
Thermal and Mechanical Properties of Uranium Nitride Prepared by SPS Technique
,”
J. Mater. Sci.
,
43
(
19
), pp.
6429
6434
.10.1007/s10853-008-2731-x
27.
Slack
,
G. A.
, and
Austerman
,
S.
,
1971
, “
Thermal Conductivity of BeO Single Crystals
,”
J. Appl. Phys.
,
42
(
12
), pp.
4713
4717
.10.1063/1.1659844
You do not currently have access to this content.