Abstract

Hybrid compact heat exchangers (HCHEs) are a potential source of innovation for intermediate heat exchangers in nuclear industry, with HCHEs being designed for generation IV nuclear power applications. Compact heat exchangers are commonly fabricated using diffusion bonding (DB), which can provide challenges for HCHEs due to resultant nonuniform stress distributions across hybrid structures during bonding, leading to variations in joint properties that can compromise performance and safety. In this paper, we introduce a heuristic for determining whether a feasible set of DB conditions exist for producing HCHE designs capable of meeting regulatory requirements under nuclear boiler and pressure vessel codes. A DB model was used to determine DB parameters for predicting percent bonded area, which determines the lower threshold of DB parameters. Structural analysis was performed on the heat exchanger design for 316 stainless steel to determine higher threshold on the DB parameters to avoid failure modes due to creep, buckling, and yield in the HCHE structure during DB. A set of DB conditions were identified and validated experimentally by producing various test coupons for evaluating bond strength, ductility, porosity, grain size, creep rupture, creep fatigue, and channel deviation. A five-layer hybrid compact heat exchanger structure was fabricated and tensile tested demonstrating that the bonding parameters satisfy all criteria in this paper for DB HCHEs with application to the nuclear industry.

References

1.
Lee
,
H. J.
,
Kim
,
H.
, and
Jang
,
C.
,
2014
, “
Compatibility of Candidate Structural Materials in High-Temperature S-CO2 Environment
,”
Fourth International Symposium-Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10, p.
9
.http://sco2symposium.com/papers2014/materials/32-Jang.pdf
2.
Aoto
,
K.
,
Dufour
,
P.
,
Hongyi
,
Y.
,
Glatz
,
J. P.
,
Kim
,
Y.-I.
,
Ashurko
,
Y.
,
Hill
,
R.
, and
Uto
,
N.
,
2014
, “
A Summary of Sodium-Cooled Fast Reactor Development
,”
Prog. Nucl. Energy
,
77
, pp.
247
265
.10.1016/j.pnucene.2014.05.008
3.
Yoon
,
H. J.
,
Ahn
,
Y.
,
Lee
,
J. I.
, and
Addad
,
Y.
,
2012
, “
Potential Advantages of Coupling Supercritical CO2 Brayton Cycle to Water Cooled Small and Medium Size Reactor
,”
Nucl. Eng. Des.
,
245
, pp.
223
232
.10.1016/j.nucengdes.2012.01.014
4.
Nestell
,
J.
, and
Sham
,
T. L.
,
2015
, “
ASME Code Considerations for the Compact Heat Exchanger
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2015/401 RC0416000; NERC015, accessed Oct. 2, 2019, https://www.osti.gov/biblio/1214514-asme-code-considerations-compact-heat-exchanger
5.
Mendez
,
C. M.
, and
Rochau
,
G. E.
,
2018
,
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications
,
Sandia National Lab
,
Albuquerque, NM
.
6.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.10.1016/j.nucengdes.2009.03.017
7.
Sabharwall
,
P.
,
Clark
,
D.
,
Glazoff
,
M.
,
Zheng
,
G.
,
Sridharan
,
K.
, and
Anderson
,
M.
,
2014
, “
Advanced Heat Exchanger Development for Molten Salts
,”
Nucl. Eng. Des.
,
280
, pp.
42
56
.10.1016/j.nucengdes.2014.09.026
8.
Hill
,
A.
,
1984
, “
Modelling and Assessment of Diffusion Bonding
,” Doctoral dissertation,
University of Cambridge
, Cambridge, UK.
9.
Hill
,
A.
, and
Wallach
,
E.
,
1989
, “
Modelling Solid-State Diffusion Bonding
,”
Acta Metall.
,
37
(
9
), pp.
2425
2437
.10.1016/0001-6160(89)90040-0
10.
Li
,
X.
,
Smith
,
T.
,
Kininmont
,
D.
, and
Dewson
,
S. J.
,
2009
, “
Materials for Nuclear Diffusion-Bonded Compact Heat Exchangers
,”
Proceedings of International Congress on Advances in Nuclear Power Plants
, Tokyo, Japan, May 10–14, p.
9
.https://www.heatric.com/app/uploads/2018/04/Materials-for-nuclear-diffusion-bonded-compact-heat-exchangers.pdf
11.
Sato
,
S.
,
Kuroda
,
T.
,
Kurasawa
,
T.
,
Furuya
,
K.
,
Togami
,
I.
, and
Takatsu
,
H.
,
1996
, “
Mechanical Properties of HIP Bonded Joints of Austenitic Stainless Steel and Cu-Alloy for Fusion Experimental Reactor Blanket
,”
J. Nucl. Mater.
,
233–237
, pp.
940
944
.10.1016/S0022-3115(96)00259-0
12.
Mohri
,
K.
,
Yamazaki
,
S.
,
Satoh
,
K.
, and
Kobayashi
,
T.
,
1989
, “
Development of High Heat Flux Component Fabrication Technology
,”
Fusion Eng. Des.
,
9
, pp.
153
158
.10.1016/S0920-3796(89)80027-4
13.
ASME Boilers and Pressure Vessels Code Case
,
2010
,
Section II Part D, Material Properties (Metric)
,
American Society of Mechanical Engineers
,
New York
.
14.
Saranam
,
V. R.
, and
Paul
,
B. K.
,
2018
, “
Feasibility of Using Diffusion Bonding for Producing Hybrid Printed Circuit Heat Exchangers for Nuclear Energy Applications
,”
ASME
Paper No. NAMRC46-185.10.1115/NAMRC46-185
15.
Ishizuka
,
T.
,
2005
, “
Thermal-Hydraulic Characteristics of a Printed Circuit Heat Exchanger in a Supercritical CO_2 Loop
,”
The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics
, Avignon, France, Oct. 2–6, p.
7
.
16.
Kissick
,
S. M.
, and
Wang
,
H.
,
2018
, “
Numerical Modeling for a Supercritical CO2-Liquid Sodium Hybrid Compact Heat Exchanger
,”
ASME
Paper No. IMECE2018-86682.10.1115/IMECE2018-86682
17.
Natesan
,
K.
, and
Li
,
M.
,
2013
, “
Materials Performance in Sodium-Cooled Fast Reactors: Past, Present, and Future
,” IAEA, Paris, pp.
461
486
, Report No. IAEA-CN–199.
18.
ASME Boilers and Pressure Vessels Code Case
,
2015
,
Section VIII Div 1, Rules for Diffusion Bonded, Flat Plate, Microchannel Heat Exchanger
,
American Society of Mechanical Engineers
,
New York
, p.
2437
.
19.
ASME Boilers and Pressure Vessels Code Case
,
2015
,
Section VIII Div 1, Diffusion Bonding
,
American Society of Mechanical Engineers
,
New York
, p.
2621
.
20.
Arostegui
,
D. A.
, and
Holt
,
M.
,
2019
, “
Advanced Nuclear Reactors: Technology Overview and Current Issues
,” Congressional Research Service Report for Congress, Washington, DC, Report No. R45706.
21.
ASME Boilers and Pressure Vessels Code Case
,
2010
,
Section II Part A, Ferrous Material Specifications
,
American Society of Mechanical Engineers
,
New York
.
22.
Paul
,
B. K.
,
2006
, “
Micro Energy and Chemical Systems (MECS) and Multiscale Fabrication
,”
Micromanufacturing and Nanotechnology
,
Springer
,
Berlin, Heidelberg
, pp.
299
355
.
23.
ASME Boilers and Pressure Vessels Code Case
,
2017
,
Section III Div V, Rules for Construction of Nuclear Facility Components: High Temperature Reactors
,
American Society of Mechanical Engineers
,
New York
.
24.
Marshall
,
P.
,
1984
,
Austenitic Stainless Steels: Microstructure and Mechanical Properties
, 1st ed.,
Springer Science & Business Media
, Dordrecht,Netherlands, p.
432
(XII pages).
25.
Li
,
L.
, and
Aubertin
,
M.
,
2003
, “
A General Relationship Between Porosity and Uniaxial Strength of Engineering Materials
,”
Can. J. Civ. Eng.
,
30
(
4
), pp.
644
658
.10.1139/l03-012
26.
Gibbs
,
T.
, and
Wyatt
,
H.
,
1961
, “
Short-Time Tensile Properties of Type 316 Stainless Steel at Very High Temperatures
,”
J. Basic Eng.
,
83
(
4
), pp.
481
488
.10.1115/1.3662240
27.
2012
,
Abaqus/Cae Users Manual, Version 6.12-1
,
Dassault Systemes Pawtucket
, Johnston,
RI
.
28.
ASTM
,
2016
,
Standard Test Methods for Tension Testing of Metallic Materials
,
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM E8/E8M-16a.
29.
Pluess
,
C.
,
2004
, “
Application of Controlled Thermal Expansion in Diffusion Bonding for the High-Volume Microlamination of MECS Devices
,” MS thesis,
Oregon State University
, Corvallis, OR.
30.
ASTM
,
2004
,
Standard Test Methods for Determining Average Grain Size
,
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM E112-96.
31.
ASTM
,
2012
,
Standard Test Method for Strain-Controlled Fatigue Testing
,
American Society for Testing and Materials
,
West Conshohocken, PA
, Standard No. ASTM E606/E606M-12.
32.
Larson
,
F. R.
,
1952
, “
A Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
, pp.
765
775
.
33.
Fahr
,
D.
,
1973
,
Analysis of Stress-Strain Behavior of Type 316 Stainless Steel
,
Oak Ridge National Lab
, Oak Ridge,
TN
.
34.
Prager
,
M.
,
Osage
,
D.
, and
Panzarella
,
C.
,
2012
, “
Evaluation of Material Strength Data for Use in API Std 530
,” Welding Research Council Bulletin, New York, NY, p.
168
.
35.
American Petroleum Institute
,
2007
, “
AuPI Fitness-for-Service: API 579-1/ASME FFS-1, 0791831027
,” American Petroleum Institute, Washington, DC.
36.
Jonasson
,
M.
,
Wihlborg
,
A.
, and
Gunnarsson
,
L.
,
1998
, “
Analysis of Surface Topography Changes in Steel Sheet Strips During Bending Under Tension Friction Test
,”
Int. J. Mach. Tools Manuf.
,
38
(
5–6
), pp.
459
467
.10.1016/S0890-6955(97)00090-4
37.
Wang
,
A.
,
Ohashi
,
O.
, and
Ueno
,
K.
,
2006
, “
Effect of Surface Asperity on Diffusion Bonding
,”
Mater. Trans.
,
47
(
1
), pp.
179
184
.10.2320/matertrans.47.179
You do not currently have access to this content.